Skip to main content
Log in

Impact of dysprosium (Dy3+) doping on size, optical and dielectric properties of titanium dioxide nanoparticles grown by low temperature hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, hydrothermal method was followed to synthesize Undoped and Dy3+ doped TiO2 nanoparticles. The as-prepared pure and doped nanoparticles were investigated by the characterization techniques, as such X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Energy dispersive X-ray analysis (EDAX), Ultraviolet–Visible (UV–Vis) spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), and Dielectric Spectroscopy. The crystallography and grain size have been studied using XRD and TEM Analysis. X-ray diffraction and energy dispersive X-ray spectroscopy results showed that the as prepared nanoparticles were without any impurity. With the doping of Dysprosium ion, the grain size increases. UV–Visible Spectra reveals the optical properties and the optical band gap calculated using Kubelka- Munk plot was found to be 3.45 eV for pure TiO2 and decreases to 3.39 eV due to doping. The results indicate that the size of the nanoparticles increases with decreasing bandgap when dopant added. The development of the anatase phase TiO2 is affirmed by XRD and FT-IR. The Dielectric properties and A.C Conductivity measurements along with frequency were done for synthesized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alamgir, W. Khan, S. Ahmad, M.M. Hassan, A.H. Naqvi, Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles. Opt. Mater. 38, 278–285 (2014)

    Article  Google Scholar 

  2. B. Singh, G. Kaur, P. Singh, K. Singh, J. Sharma, M. Kumar, R. Bala, R. Meena, S.K. Sharama, A. Kumar, Nanostructured BN-TiO2 composite with ultra-high photocatalytic activity. New J. Chem. 41, 11640–11646 (2017)

    Article  Google Scholar 

  3. R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare, K. Garadkar, Synthesis and enhanced photocatalytic activity of Zr-doped N-TiO2 nanostructures. J. Mater. Sci. 26, 554–563 (2015)

    Google Scholar 

  4. T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method formation process and size control. J. Colloid Interface Sci. 259, 43–52 (2003)

    Article  Google Scholar 

  5. K.M. Butt, M.A. Farrukh, I. Muneer, Influence of lanthanum doping via hydrothermal and reflux methods on the SnO2–TiO2 nanoparticles prepared by sol–gel method and their catalytic properties. J. Mater. Sci. 27(8), 8493–8498 (2016)

    Google Scholar 

  6. M. Khairy, W. Zakaria, Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 23, 419–426 (2014)

    Article  Google Scholar 

  7. B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev. 44, 8326–8349 (2015)

    Article  Google Scholar 

  8. Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Dysprosium cerate nanostructures: facile synthesis, characterization, optical and photocatalytic properties. J. Rare Earths 35(8), 805 (2017)

    Article  Google Scholar 

  9. M. Prekajskia, A. Zarubica, B. Babic, B. Jokic, J. Pantic, J. Lukovic, B. Matovic, Synthesis and characterization of Cr3+ doped TiO2 nanometric powders. Ceram. Int. 42, 1862–1869 (2016)

    Article  Google Scholar 

  10. P. Vlazan, D.H. Ursu, C. Irina-Moisescu, I. Miron, P. Sfirloaga, E. Rusu, Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method. Mater. Charact. 101, 153–158 (2015)

    Article  Google Scholar 

  11. V. Kumar, S.K. Swami, A. Kumar, O.M. Ntwaeaborwa, V. Dutta, H.C. Swart, Eu3+ doped down shifting TiO2 layer for efficient dye-sensitized solar cells. J. Colloid Interface Sci. 484, 24–32 (2016)

    Article  Google Scholar 

  12. Chen, Luo, Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors. J. Nanosci. Nanotechnol. 10, 1482–1494 (2010)

    Article  Google Scholar 

  13. Y. Qin, Z. Hu, B.H. Lim, W.S. Chang, K.K. Chong, P. Zhang, H. Zhang, Sol-hydrothermal synthesis of TiO2:Sm3+ nanoparticles and their enhanced photovoltaic properties. J. Alloys Compd. 686, 803–809 (2016)

    Article  Google Scholar 

  14. C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 623, 248–254 (2015)

    Article  Google Scholar 

  15. X. Wang, J. Tian, C. Fei, L. Lv, Y. Wang, G. Cao, Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Adv. 5, 8622 (2015)

    Article  Google Scholar 

  16. S. Valencia, J.M. Marín, G. Restrepo, Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J. 4, 9–14 (2010)

    Google Scholar 

  17. V.P.M. Shajudheen, K. Vishwanathan, K.A. Rani, A.U. Maheswari, S.S. Kumar, A simple chemical precipitation method of titanium dioxide nanoparticles using polyvinyl pyrrolidone as a capping agent and their characterization. Int. Sci. Index Chem. Mol. Eng. 10, 5 (2016)

    Google Scholar 

  18. S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5, 449–456 (2015)

    Article  Google Scholar 

  19. B. Choudhury, A. Choudhury, Luminescence characteristics of cobalt doped TiO2 nanoparticles. J. Lumin. 132, 178–184 (2012)

    Article  Google Scholar 

  20. A. Amalraj, A. Pius, Photocatalytic degradation of Alizarin Red S and Bismarck Brown R Using TiO2 photocatalyst. J. Chem. Appl. Biochem. 1(1), 1–7 (2014)

    Google Scholar 

  21. N. Kanagathara, G. Anbalagan, Growth, optical and dielectric studies on pure and L-lysine doped KDP crystals. Int. J. Opt. 2012, 6 (2012)

  22. S. Suresh, Studies on the dielectric properties of CdS nanoparticles. Appl. Nanosci. 4, 325–329 (2014)

    Article  Google Scholar 

  23. A.K. Abdul Gafoor, M.M. Musthafa, P.P. Pradyumnan, Effect of Nd3+ doping on optical and dielectric properties of TiO2 nanoparticles synthesized by a low temperature hydrothermal method. J. Nano Sci. Nano Technol. 1(2), (2013)

  24. S. Nayak, B. Sahoo, T.K. Chakia, D. Khastgir, Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior. RSC Adv. 4, 1212–1224 (2014)

    Article  Google Scholar 

  25. K.V. Arun Kumar, S. Thomas, M. Gopinath, P.R. Biju, N.V. Unnikrishnan, Structural and dielectric studies of Eu3+/Ag nanocrystallites: SiO2–TiO2 matrices. J. Mater. Sci.: Mater. Electron. 24, 1727–1733 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Victor Antony Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arasi, S.E., Raj, M.V.A. & Madhavan, J. Impact of dysprosium (Dy3+) doping on size, optical and dielectric properties of titanium dioxide nanoparticles grown by low temperature hydrothermal method. J Mater Sci: Mater Electron 29, 3170–3177 (2018). https://doi.org/10.1007/s10854-017-8250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8250-2

Navigation