Skip to main content
Log in

Effective chemical route for the synthesis of thiophenol stabilized cadmium sulphide (CdS) quantum dots: compact discussions on the structural, morphological, optical and dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article describes the synthesis of CdS quantum dots by conventional chemical precipitation technique using thiophenol as a stabilizer. Structural information, crystallite size, lattice strain and dislocation density were determined by powder XRD analysis. FTIR analysis confirms the functional groups present in the synthesized CdS nanoparticles. FESEM and TEM analyses were used to investigate the morphology, particle size, phase identification and particle size distribution of the CdS nanoparticles. EDX analysis gives the elemental composition of the title compound. UV–vis-NIR reflectance spectroscopy brings out the nano-regime nature and bandgap of the resultant CdS product. Photoluminescence analysis describes the various emission properties of CdS quantum dots. The emission spectrum was analyzed through Commission International de I’Eclairage (CIE) 1931 chromaticity diagram to explore the dominant emission from the CdS quantum dots. DLS analysis gives out the information regarding secondary particle size of CdS nanoparticles. Dielectric study gives the relation between the dielectric constant and frequency for various temperatures. This work may help to develop a better understanding of solution growth mechanism and stabilizing nature of nanoparticles through chemical synthesis technique. The CdS nanoparticles are useful for the photovoltaic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Girish Kumar, K.S.R. Koteswara Rao, Energy Environ. Sci. 7, 45–102 (2014)

    Article  Google Scholar 

  2. G. Tai, J. Zhou, W. Guo, Nanotechnology 21, 175601 (2010)

    Article  Google Scholar 

  3. Z.R. Khan, M. Zulfequar, M.S. Khan, J. Mater. Sci. 46, 5412–5416 (2011)

    Article  Google Scholar 

  4. S. Celebi, A.K. Erdamar, A. Sennaroglu, A. Kurt, H.Y. Acar, J. Phys. Chem. B 111, 12668–12675 (2007)

    Article  Google Scholar 

  5. Y.-J. Shen, Y.-L. Lee, Y.-M. Yang, J. Phys. Chem. B 110, 9556–9564 (2006)

    Article  Google Scholar 

  6. M.A. Gondal, A.A. Bagabas, M.A. Dastageer, J. Nanopart. Res. 13, 3835–3842 (2011)

    Article  Google Scholar 

  7. A. Dumbrava, G. Prodan, D. Berger, M. Bica, Powder Technol. 270, 197–204 (2015)

    Article  Google Scholar 

  8. S. Khajuria, S. Sanotra, J. Ladol, H.N. Sheikh, J. Mater. Sci. Mater. Electron. 26, 7073–7080 (2015)

    Article  Google Scholar 

  9. M. Green, J. Mater. Chem. 20, 5797–5809 (2010)

    Article  Google Scholar 

  10. M.L. Curri, A. Agostiano, L. Manna, M.D. Monica, M. Catalano, L. Chiavarone, V. Spagnolo, M. Lugara, J. Phys. Chem. B 104, 8391–8397 (2000)

    Article  Google Scholar 

  11. V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074–1079 (2009)

    Article  Google Scholar 

  12. O.H. Abd-Elkader, A.A. Shaltout, Mater. Sci. Semicond. Process. 35, 132–138 (2015)

    Article  Google Scholar 

  13. K. Kapoor, D. Lahiri, S.V.R. Rao, T. Sanyal, B.P. Kashyap, Bull. Mater. Sci. 27, 59–67 (2004)

    Article  Google Scholar 

  14. A.K. Zak, WHA Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  Google Scholar 

  15. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  16. S. Kumar, P. Sharma, V. Sharma, Electron. Mater. Lett. 9, 371–374 (2013)

    Article  Google Scholar 

  17. N.Q. Chinh, J. Gubicza, T.G. Langdon, J. Mat. Sci. 42, 1594–1605 (2007)

    Article  Google Scholar 

  18. M.F. Kotkata, A.E. Masoud, M.B. Mohamed, E.A. Mahmoud, Physica E 41, 1457–1465 (2009)

    Article  Google Scholar 

  19. Y.-B. Duan, S. Yuan, R. Wang, I. Mukhopadhyay, Chem. Phys. 330, 9–15 (2006)

    Article  Google Scholar 

  20. C. Humbert, O. Pluchery, E. Lacaze, A. Tadjeddine, B. Busson, Gold Bull. 46, 299–309 (2013)

    Article  Google Scholar 

  21. W.D. Pyrz, D.J. Buttrey, Langmuir 24, 11350–11360 (2008)

    Article  Google Scholar 

  22. N. Ghows, M.H. Entezari, Ultrason. Sonochem. 18, 269–275 (2011)

    Article  Google Scholar 

  23. H. Wang, P. Fang, Z. Chen, S. Wang, J. Alloy. Compd. 461, 418–422 (2008)

    Article  Google Scholar 

  24. C. Unni, D. Philip, K.G. Gopchandran, Spectrochim. Acta Part A 71, 1402–1407 (2008)

    Article  Google Scholar 

  25. P. Dalvand, M.R. Mohammadi, J. Nanopart. Res. 13, 3011–3018 (2011)

    Article  Google Scholar 

  26. H.S. Mansur, AAP Mansur, J.C. Gonzalez, Polymer 52, 1045–1054 (2011)

    Article  Google Scholar 

  27. Y. Dieckmann, H. Colfen, H. Hofmann, A. Petri-Fink, Anal. Chem. 81, 3889–3895 (2009)

    Article  Google Scholar 

  28. D. Fang, R. Chen, H. Liu, Z. Zhang, Z. Ding, J. Nanosci. Nanotechnol. 10, 7600–7602 (2010)

    Article  Google Scholar 

  29. H.Y. Acar, R. Kas, E. Yurtsever, C. Ozen, I. Lieberwirth, J. Phys. Chem. 113, 10005–10012 (2009)

    Article  Google Scholar 

  30. R. Vijayakumar, K. Marimuthu, J. Mol. Struct. 1092, 166–175 (2015)

    Article  Google Scholar 

  31. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Appl. Catal. B 68, 1–11 (2006)

    Article  Google Scholar 

  32. D. Ayodhya, M. Venkatesham, A. Santoshi kumara, G. Bhagavanth Reddy, G. Veerabhadram, Int. J. Ind. Chem. 6, 261–271 (2015)

    Article  Google Scholar 

  33. B. Lorber, F. Fischer, M. Bailly, H. Roy, D. Kern, Biochem. Mol. Biol. Educ. 40, 372–382 (2012)

    Article  Google Scholar 

  34. A. Kale, Y. Bao, Z. Zhou, P.E. Prevelige, A. Gupta, Nanotechnology 24, 045603 (2013)

    Article  Google Scholar 

  35. P.V. Dhanaraj, N.P. Rajesh, G. Vinitha, G. Bhagavannarayana, Mater. Res. Bull. 46, 726–731 (2011)

    Article  Google Scholar 

  36. P.V. Dhanaraj, N.P. Rajesh, G. Bhagavannarayana, Physica B 405, 3441–3445 (2010)

    Article  Google Scholar 

  37. S. Suresh, Appl. Nanosci. 4, 325–329 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Murugakoothan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniyappan, S., Solaiyammal, T., Sudhakar, K. et al. Effective chemical route for the synthesis of thiophenol stabilized cadmium sulphide (CdS) quantum dots: compact discussions on the structural, morphological, optical and dielectric properties. J Mater Sci: Mater Electron 29, 2899–2906 (2018). https://doi.org/10.1007/s10854-017-8220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8220-8

Navigation