Skip to main content
Log in

Microstructure and optoelectronic properties of gallium–magnesium codoped zinc oxide thin films by magnetron sputtering technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The gallium–magnesium codoped zinc oxide (GMZO) thin films were deposited on glass substrates by radio frequency magnetron sputtering technique in an argon atmosphere. The influence of substrate temperature on the microstructure, morphology and optoelectronic properties of thin films was investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, four-point probe and spectrophotometry. It is found that all the deposited films have a hexagonal structure and a preferred orientation along the c-axis perpendicular to the substrate. As the substrate temperature increases, the dislocation density, lattice strain and electrical resistivity decrease initially and then increase, while the average crystallite size, average visible transmittance and figure of merit exhibit the reverse variation trend. The GMZO thin film deposited at the substrate temperature of 570 K possesses the best optoelectronic properties, with the largest average crystallite size of 52.05 nm, the lowest dislocation density of 3.69 × 1014 lines m− 2, the minimum lattice strain of 1.10 × 10− 3, the lowest electrical resistivity of 1.62 × 10− 3 Ω cm, the highest average visible transmittance of 88.63% and the maximum figure of merit of 5.11 × 103 Ω−1 cm− 1. The optical energy gaps of the films were evaluated by extrapolation method and observed to be in the range of 3.34–3.55 eV. Furthermore, the complex refractive index, the complex dielectric constant and the dissipation factor were determined by optical characterization methods, and the dispersion behaviour of refractive index was studied in terms of the single electronic oscillator model. The results show that the microstructure and optoelectronic properties of the GMZO thin films are dependent on substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.S. Song, N.J. Seong, K.J. Choi et al., Thin Solid Films 546(1), 271–274 (2013)

    Article  Google Scholar 

  2. Z. Zhong, H. Kang, Z. Lu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 36(1), 64–70 (2017)

    Google Scholar 

  3. N. Yamamoto, H. Makino, S. Osone et al., Thin Solid Films 520(12), 4131–4138 (2012)

    Article  Google Scholar 

  4. S. Chen, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 33(2), 57–62 (2014)

    Google Scholar 

  5. J.-L. Wu, H.-Y. Lin, B.-Y. Su et al., J. Alloy. Compd. 592(1), 35–41 (2014)

    Article  Google Scholar 

  6. C.Y. Park, J.H. Lee, B.H. Choi, Org. Electron. 14(12), 3172–3179 (2013)

    Article  Google Scholar 

  7. H. Long, Z. Zhong, J. Gu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 36(1), 71–75 (2017)

    Google Scholar 

  8. M. Hjiri, L.E. Mir, S.G. Leonardi et al., Sensor. Actuat. B 196(1), 413–420 (2014)

    Article  Google Scholar 

  9. J. Hu, Y. Zhou, H. Liu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 29(2), 6–10 (2010)

    Google Scholar 

  10. A. Barhoumi, G. Leroy, B. Duponchel et al., Superlattice. Microstruct. 82(1), 483–498 (2015)

    Article  Google Scholar 

  11. Z. Zhong, J. Gu, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(4), 33–37 (2009)

    Google Scholar 

  12. S. Suzuki, T. Miyata, M. Ishii et al., Thin Solid Films 434(1–2), 14–19 (2003)

    Article  Google Scholar 

  13. S.D. Kirbey, R.B. Van Dover, Thin Solid Films 517(6), 1958–1960 (2009)

    Article  Google Scholar 

  14. A. Suresh, P. Wellenius, A. Dhawan et al., Appl. Phys. Lett. 90(12), 123512–123514 (2007)

    Article  Google Scholar 

  15. R. Ebrahimifard, M.R. Golobostanfard, H. Abdizadeh, Appl. Surf. Sci. 290(1), 252–259 (2014)

    Article  Google Scholar 

  16. L. Zhang, J. Huang, J. Yang et al., Mater. Sci. Semicond. Process 42(Part 3), 277–282 (2016)

    Article  Google Scholar 

  17. D. Fang, K. Lin, T. Xue et al., J. Alloy. Compd. 589(1), 346–352 (2014)

    Article  Google Scholar 

  18. A. Davoodi, M. Tajally, O. Mirzaee et al., J. Alloy. Compd. 657(1), 296–301 (2016)

    Article  Google Scholar 

  19. Z. Zhong, T. Zhang, H. Wang, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 32(1), 58–64 (2013)

    Google Scholar 

  20. K. Zheng, L. Gu, D. Sun et al., Mater. Sci. Eng. B 166(1), 104–107 (2010)

    Article  Google Scholar 

  21. T. Makino, K. Tamura, C.H. Chia et al., Phys. Stat. Sol. B 229(3), 853–857 (2002)

    Article  Google Scholar 

  22. L.-H. Cheng, L.-Y. Zheng, L. Meng et al., Ceram. Int. 38(Supplement 1), s457–s461 (2012)

    Article  Google Scholar 

  23. G.G. Valle, P. Hammer, S.H. Pulcinelli et al., J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004)

    Article  Google Scholar 

  24. H. Mondragón-Suárez, A. Maldonado, L. de la Olvera et al., Appl. Surf. Sci. 193(1–4), 52–59 (2002)

    Article  Google Scholar 

  25. P. Singh, A. Kaushal, D. Kaur, J. Alloy. Compd. 471(1–2), 11–15 (2009)

    Article  Google Scholar 

  26. X. He, L. Xiong, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 30(2), 70–73 (2011)

    Google Scholar 

  27. J. Kim, J.H. Yun, S.W. Jee et al., Mater. Lett. 65(4), 786–789 (2011)

    Article  Google Scholar 

  28. J.P. Kar, S. Kim, B. Shin et al., Solid-State Electron. 54(11), 1447–1450 (2010)

    Article  Google Scholar 

  29. A. Zhou, H. Liu, Y. Yuan, J. Vacuum Sci. Technol. 32(4), 974–977 (2012)

    Google Scholar 

  30. S. Chen, S. Wei, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34(3), 72–78 (2015)

    Google Scholar 

  31. J. Mass, P. Bhattacharya, R.S. Katiyar, Mater. Sci. Eng. B 103(1), 9–15 (2003)

    Article  Google Scholar 

  32. F. Sun, S. Hui, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(2), 10–13 (2009)

    Google Scholar 

  33. X. Yu, J. Ma, F. Ji et al., Appl. Surf. Sci. 239(2), 222–226 (2005)

    Article  Google Scholar 

  34. I. Chambouleyron, S.D. Ventura, E.G. Birgin et al., J. Appl. Phys. 92(6), 3093–3102 (2002)

    Article  Google Scholar 

  35. E.G. Birgin, I. Chambouleyron, J.M. Martínez, J. Comput. Phys. 151(2), 862–880 (1999)

    Article  Google Scholar 

  36. J. Chen, D. Chen, J. He et al., Appl. Surf. Sci. 255(23), 9413–9419 (2009)

    Article  Google Scholar 

  37. Z.B. Ayadi, L.E. Mir, K. Djessas et al., Mater. Sci. Eng. C 28(5–6), 613–617 (2008)

    Article  Google Scholar 

  38. T. Huang, C. Li, J. Wu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 32(3), 5–7 (2013)

    Google Scholar 

  39. S. Li, H. Yang, W. Wang et al., Mater. Rev. B 28(10), 6–10 (2014)

    Google Scholar 

  40. K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process 16(2), 337–343 (2013)

    Article  Google Scholar 

  41. J. Gu, Z. Lu, L. Long et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(2), 91–96 (2016)

    Google Scholar 

  42. D. Briggs, M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. (Wiley, New York, 1983)

    Google Scholar 

  43. Z.Z. You, J.Y. Dong, Vacuum 81(7), 819–825 (2007)

    Article  Google Scholar 

  44. C. Li, B. Yang, L. Qian et al., Optoelectron. Lett. 7(6), 0431–0436 (2011)

    Article  Google Scholar 

  45. Z. Huang, X. Liu, L. Wu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(1), 17–22 (2016)

    Google Scholar 

  46. P.P. Sahay, S. Tewari, R.K. Nath, Cryst. Res. Technol. 42(3), 723–729 (2007)

    Article  Google Scholar 

  47. J. Gu, Z. Zhong, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(3), 30–33 (2009)

    Google Scholar 

  48. Z.Z. You, G.J. Hua, Y.C. Yong et al., Cryst. Res. Technol. 47(10), 1039–1046 (2012)

    Article  Google Scholar 

  49. S. Chen, C. Lan, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(2), 97–102 (2016)

    Google Scholar 

  50. L. de la Olvera, A. Maldonado, R. Asomoza et al., J. Mater. Sci.: Mater. Electron. 11(5), 383–387 (2000)

    Google Scholar 

  51. X.-Y. Li, H.-J. Li, Z.-J. Wang et al., Opt. Commun. 282(2), 247–252 (2009)

    Article  Google Scholar 

  52. C.Y. Tsay, C.W. Wu, C.M. Lei et al., Thin Solid Films 519(5), 1516–1520 (2010)

    Article  Google Scholar 

  53. S.B. Chen, S. Wei, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(1), 43–46 (2009)

    Article  Google Scholar 

  54. S.R. Aghdaee, V. Soleimanian, B. Tayebi, Superlattice. Microstruct. 51(1), 149–162 (2012)

    Article  Google Scholar 

  55. Q.-B. Ma, Z.-Z. Ye, H.-P. He et al., J. Cryst. Growth 304(1), 64–68 (2007)

    Article  Google Scholar 

  56. Q.B. Ma, Z.Z. Ye, H.P. He et al., Mater. Sci. Semicond. Process 10(4–5), 167–172 (2007)

    Article  Google Scholar 

  57. M. Lv, X. Xiu, Z. Pang et al., Appl. Surf. Sci. 252(5), 2006–2011 (2005)

    Article  Google Scholar 

  58. J. Gu, L. Long, Z. Lu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34(2), 68–73 (2015)

    Google Scholar 

  59. A.K. Singh, Optik 124(15), 2187–2190 (2013)

    Article  Google Scholar 

  60. Y. Yang, X.W. Sun, B.J. Chen et al., Thin Solid Films 510(1–2), 95–101 (2006)

    Article  Google Scholar 

  61. J. Gu, L. Long, C. Lan et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 33(4), 78–84 (2014)

    Google Scholar 

  62. D.R. Sahu, J.L. Huang, Sol. Energy Mater. Sol. Cells 93(11), 1923–1927 (2009)

    Article  Google Scholar 

  63. S. Aksoy, Y. Caglar, S. Ilican et al., J. Alloy. Compd. 512(1), 171–178 (2012)

    Article  Google Scholar 

  64. M. Zribi, M. Kanzari, B. Rezig, Mater. Lett. 60(1), 98–103 (2006)

    Article  Google Scholar 

  65. J.I. Pankove, Optical Processes in Semiconductors. (Dover Publications, New York, 1975)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (CZP17002, CZW14019), South-Central University for Nationalities. The authors would like to thank the reviewers and editors for several helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Kang or Z. Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Lu, Z., Zhong, Z. et al. Microstructure and optoelectronic properties of gallium–magnesium codoped zinc oxide thin films by magnetron sputtering technique. J Mater Sci: Mater Electron 29, 2874–2882 (2018). https://doi.org/10.1007/s10854-017-8217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8217-3

Navigation