Skip to main content
Log in

Microwave dielectric properties of Sr0.7Ce0.2TiO3–Sr(Mg1/3Nb2/3)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

xSr0.7Ce0.2TiO3–(1 − x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1 − x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm−1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm−1 for FWHM of A1g mode Raman peaks suggests to a lower Q × f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450 °C for 4 h illustrates excellent microwave dielectric properties with ε r  ~ 35.4, Q × f ~ 11282 GHz and τ f  ~ 1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Li, X.M. Chen, X.C. Fan, J. Eur. Ceram. Soc. 26, 2817 (2006)

    Article  Google Scholar 

  2. K.W. Tay, W.F. Wu, Procedia Eng. 36, 462 (2012)

    Article  Google Scholar 

  3. B. Ullah, W. Lei, Z.Y. Zou, X.H. Wang, W.Z. Lu, J. Alloys Compd. 695, 648 (2016)

    Article  Google Scholar 

  4. B. Ulah, W. Lei, Q.S. Cao, Z.Y. Zou, X.K. Lan, X.H. Wang, W.Z. Lu, J. Am. Ceram. Soc. 99, 3286 (2016)

    Article  Google Scholar 

  5. B. Ulah, W. Lei, X.H. Wang, G.F. Fan, X.C. Wang, W.Z. Lu, RSC Adv. 6, 91679 (2016)

    Article  Google Scholar 

  6. G. Subodh, M.T. Sebastian, Mater. Sci. Eng. B 136, 50 (2007)

    Article  Google Scholar 

  7. G. Subodh, J. James, M.T. Sebastian, R. Paniago, A. Dias, R.L. Moreira, Chem. Mater. 19, 4077 (2007)

    Article  Google Scholar 

  8. B. Ullah, W. Lei, X.Q. Song, X.H. Wang, W.Z. Lu, J. Eur. Ceram. Soc. 37, 3051 (2017)

    Article  Google Scholar 

  9. P.J. Chang, C.T. Chia, I.N. Lin, J.F. Lee, C.M. Lin, K.T. Wu, Appl. Phys. Lett. 88, 242907 (2006)

    Article  Google Scholar 

  10. S. Nomuro, K. Toyama, K. Kaneta, Jpn. J. Appl. Phys. 21, L624 (1982)

    Article  Google Scholar 

  11. C.L. Huang, S.S. Liu, C.C. Chen, J. Alloys Compd. 468, L13 (2009)

    Article  Google Scholar 

  12. F. Liang, W.Z. Lu, D.X. Zhou, X.H. Wang, J. Electroceram. 21, 431 (2007)

    Article  Google Scholar 

  13. H.J. Lee, H.M. Park, Y.W. Song, Y.K. Cho, J. Am. Ceram. Soc. 84, 2105 (2001)

    Article  Google Scholar 

  14. X.Q. Song, K. Du, Z.Y. Zou, Z.H. Chen, W.Z. Lu, S.H. Wang, W. Lei, Ceram. Int. 43, 14453 (2017)

    Article  Google Scholar 

  15. A. Dutta, C. Bharti, T.P. Sinha, Phys. B 403, 3389 (2008)

    Article  Google Scholar 

  16. S. Qin, X. Wu, F. Seifert, J. Chem. Soc. Dalton Trans. 19, 3751 (2002)

    Article  Google Scholar 

  17. H. Zheng, G.D.C. Csete de Györgyfalva, R. Quimby, H. Bagshaw, R. Ubic, I.M. Reaney, J. Yarwood, J. Eur. Ceram. Soc. 23, 2653 (2003)

    Article  Google Scholar 

  18. H. Zheng, H. Bagshaw, G.D.C. Csete de Györgyfalva, I.M. Reaney, R. Ubic, J. Yarwood, J. Appl. Phys. 94, 2948 (2003)

    Article  Google Scholar 

  19. D. Zhou, L.X. Pang, H. Wang, J. Guo, X. Yao, C.A. Randall, J. Mater. Chem. 21, 18412 (2011)

    Article  Google Scholar 

  20. R.L. Moreira, R.P.S.M. Lobo, G. Subodh, M.T. Sebastian, F.M. Matinaga, Chem. Mater. 19, 6548 (2007)

    Article  Google Scholar 

  21. A. Manan, A. Ullah, A.S. Ahmad, Mater. Sci. Pol. 34, 1 (2016)

    Article  Google Scholar 

  22. R. Singh, K. Kambale, A.R. Kulkarni, C.S. Harendranath, Mater. Chem. Phys. 138, 905 (2013)

    Article  Google Scholar 

  23. R. Lowndes, M. Deluca, F. Azough, R. Freer, J. Appl. Phys. 113, 044115 (2013)

    Article  Google Scholar 

  24. R.C.D. Costa, A.D. Rodrigues, T.R. Cunha, J.W.M. Espinosa, P.S. Pizani, Ceram. Int. 43, 116 (2017)

    Article  Google Scholar 

  25. Q. Wu, J. Xu, Q. Zhuang, S. Sun, Solid State Ion. 177, 1483 (2006)

    Article  Google Scholar 

  26. W. Gong, B. Ullah, W. Lei, G.F. Fan, X.H. Wang, W.Z. Lu, Ceram. Int. 43, 3051 (2016)

    Article  Google Scholar 

  27. S.K. Jaiswal, J. Hong, K.J. Yoon, J.W. Son, H.W. Lee, J.H. Lee, Ceram. Int. 42, 10366 (2016)

    Article  Google Scholar 

  28. E. Ksepko, E. Talik, A. Ratuszna, A. Molak, Z. Ujma, I. Gruszka, J. Alloys Compd. 386, 35 (2005)

    Article  Google Scholar 

  29. C.E. Huang, X. Lu, M. Lu, Y. Huan, Ceram. Int. 43, 10624 (2017)

    Article  Google Scholar 

  30. C.F. Xing, J.X. Bi, H.T. Wu, J. Alloys Compd. 719, 58 (2017)

    Article  Google Scholar 

  31. P.F. Ning, L.X. Li, P. Zhang, W.S. Xia, Ceram. Int. 38, 1391 (2012)

    Article  Google Scholar 

  32. Y.Z. Hao, H. Yang, G.H. Chen, Q.L. Zhang, J. Alloys Compd. 552, 173 (2013)

    Article  Google Scholar 

  33. S.K. Singh, V.R.K. Murthy, Ceram. Int. 42, 7284 (2016)

    Article  Google Scholar 

  34. F. Liu, C.L. Yuan, X. Liu, J.J. Qu, G.H. Chen, C. Zhou, Mater. Res. Bull. 70, 678 (2015)

    Article  Google Scholar 

  35. P.F. Liang, X.L. Chao, Z.P. Yang, Mater. Chem. Phys. 167, 103 (2015)

    Article  Google Scholar 

  36. M. Mondal, S. Das, T. Badapanda, T.P. Sinha, P.M. Sarun, Phys. B 508, 124 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of the National Natural Science Foundation of China (Grant No. 11464006) is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Yuan, C., Wang, Z. et al. Microwave dielectric properties of Sr0.7Ce0.2TiO3–Sr(Mg1/3Nb2/3)O3 ceramics. J Mater Sci: Mater Electron 29, 2668–2675 (2018). https://doi.org/10.1007/s10854-017-8193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8193-7

Navigation