Skip to main content
Log in

Effects of Bi3+ substitution on microwave dielectric properties of (Ce1−x Bi x )0.2Sr0.7TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave dielectric ceramics (Ce1−x Bi x )0.2Sr0.7TiO3 (x = 0–0.08) were prepared by conventional solid-state route. The specimens have been characterized using scanning electron microscopy, X-ray diffraction, Raman and impedance spectroscopy techniques. A single perovskite solid solution with cubic structure can be formed over the entire range of x value. Raman analysis discovers that first-order modes are activated by polar defects. With increasing substitution of Bi3+ for Ce3+ ions from x = 0–0.08, the dielectric constant can be improved from 158 to 200 and the product (Q × f) of quality factor (Q) and response frequency (f) decreases from 9531 to 1751 GHz, while the temperature coefficient of resonant frequency increases slightly from 500 to 620 ppm/°C. The impedance analysis revealed that the (Ce1−x Bi x )0.2Sr0.7TiO3 ceramics illustrate electrical heterostructure, which includes grains, grain-layers and grain-boundaries. The mechanism of such electrical heterostructure associated with charge compensation is induced by Bi volatilization at elevated temperature. The presence of the heterogeneous microstructure can deteriorate seriously the Q × f value duo to Bi3+ volatilization at higher sintering temperature. An excellent microwave dielectric properties with dielectric constant ~200, modest Q × f value ~1751 GHz and relatively low temperature coefficient of resonant frequency ~621 ppm/°C can be obtained for the (Ce1−x Bi x )0.2Sr0.7TiO3 with Bi content of x = 0.08, compared with that of (Sr, Ca) TiO3 high-dielectric microwave ceramics. This system will provide a new insight for the fabrication of high-dielectric microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.M. Reaney, I. David, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  2. W. Wersing, Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)

    Article  Google Scholar 

  3. Z. Fang, B. Tang, F. Si, S. Zhang, Low temperature sintering of high permittivity Ca–Li–Nd–Ti microwave dielectric ceramics with BaCu(B2O5) additives. J. Alloy. Compd. 693, 843–852 (2017)

    Article  Google Scholar 

  4. Y.C. Chen, P.S. Cheng, C.F. Yang, W.C. Tzou, Substitution of CaO by BaO to improve the microwave dielectric properties of CaO–Li2O–Sm2O3–TiO2 ceramics. Ceram. Int. 27, 809–813 (2001)

    Article  Google Scholar 

  5. Z. Peng, H. Wang, X. Yao, Dielectric resonator antennas using high permittivity ceramics. Ceram. Int. 30, 1211–1214 (2004)

    Article  Google Scholar 

  6. G. Subodh, J. James, M.T. Sebastian, R. Paniago, A. Dias, R.L. Moreira, Structure and microwave dielectric properties of Sr2+nCe2Ti5+nO15+3n (n ≤ 10) homologous series. Chem. Mater. 19, 4077–4082 (2007)

    Article  Google Scholar 

  7. G.S.R. Ubic, M.T. Sebastian, D. Gout, T. Proffen, Structure of compounds in the Sr1–3x/2Ce x TiO3 homologous series. Chem. Mater. 20, 3127–3133 (2008)

    Article  Google Scholar 

  8. R.L. Moreira, R.P. Lobo, G. Subodh, M.T. Sebastian, F.M. Matinaga, A. Dias, Optical phonon modes and dielectric behavior of Sr1–3x/2Ce x TiO3 microwave ceramics. Chem. Mater. 19, 6548–6554 (2007)

    Article  Google Scholar 

  9. P.S. Anjana, T. Joseph, M.T. Sebastian, Microwave dielectric properties of (1–x)CeO2xRE2O3 (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb and Y) (0 ≤ x ≤ 1) ceramics. J. Alloy. Compd. 490, 208–213 (2010)

    Article  Google Scholar 

  10. J. Qu, F. Liu, C. Yuan, X. Liu, G. Chen, Effects of Bi3+ substitution for Nd3+ on microwave dielectric properties of Ca0.61(Nd1–x Bi x )0.26TiO3 ceramics. Mater. Lett. 159, 436–438 (2015)

    Article  Google Scholar 

  11. M. Hu, Z. Ding, G. Xiong, D. Ji, K. Zhang, Sintering behavior and dielectric properties of Bi3+-substituted Nd(Zn0.5Ti0.5)O3 microwave ceramics. Mod. Phys. Lett. B 29, 1550233–1550244 (2015)

    Article  Google Scholar 

  12. I. Akin, M. Li, Z. Lu, D.C. Sinclair. Oxygen-loss in A-site deficient Sr0.85La0.10TiO3 perovskite. RSC Adv. 4, 32549–32554 (2014)

    Article  Google Scholar 

  13. A. Chen, Y. Zhi, Dielectric properties and complex defect in (Sr1–x Bi2/3x )TiO3 ceramics. J. Appl. Phys. 71, 4451–4454 (1992)

    Article  Google Scholar 

  14. V. Petrovsky, A. Manohar, F. Dogan, Dielectric constant of particles determined by impedance spectroscopy. J. Appl. Phys. 100, 014102–014105 (2006)

    Article  Google Scholar 

  15. E.J. Abram, D.C. Sinclair, A.R. West, A Strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate. J. Electroceram. 10, 165–177 (2003)

    Article  Google Scholar 

  16. J.H. Park, J.S. Bae, B.C. Choi, J.H. Jeong, Impedance spectroscopy of Bi3.25La0.75Ti3O12 ceramics above and below ferroelectric transition temperatures. J. Phys. D Appl. Phys. 40, 579–583 (2007)

    Article  Google Scholar 

  17. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics. J. Phys. D Appl. Phys. 42, 65413–65422(65410) (2009)

    Article  Google Scholar 

  18. M. Li, A. Feteira, M. Mirsaneh, S. Lee, M.T. Lanagan, C.A. Randall, D.C. Sinclair, Influence of nonstoichiometry on extrinsic electrical conduction and microwave dielectric loss of BaCo1/3Nb2/3O3 ceramics. J. Am. Ceram. Soc. 93, 4087–4095 (2010)

    Article  Google Scholar 

  19. C. Yuan, G. Chen, C. Zhou, Y. Yang, F. Peng, Effect of excess Li+ on microwave dielectric properties of Ca0.16Sr0.04Li0.4Nd0.4TiO3 ceramics. Int. J. Appl. Ceram. Tecnol. 12, E55–E63 (2015)

    Article  Google Scholar 

  20. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  21. X. Wang, Q. Hu, L. Li, X. Lu, Effect of Pr substitution on structural and dielectric properties of SrTiO3. J. Appl. Phys. 112, 044106–044109 (2012)

    Article  Google Scholar 

  22. A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, H.C. Li, W. Si, X.X. Xi, Observation of the first-order Raman scattering in SrTiO3 thin films. Phys. Rev. Lett. 82, 4500–4503 (1999)

    Article  Google Scholar 

  23. D.A. Crandles, B. Nicholas, C. Dreher, C.C. Homes, A.W. Mcconnell, B.P. Clayman, W.H. Gong, J.E. Greedan, Optical properties of highly reduced SrTiO3-x. Phys. Rev. B 59, 12842–12846 (1999)

    Article  Google Scholar 

  24. A.A. Sirenko, C. Bernhard, A. Golnik, A.M. Clark, J. Hao, W. Si, X.X. Xi, Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000)

    Article  Google Scholar 

  25. W.G. Nilsen, J.G. Skinner, Raman spectrum of strontium titanate. J. Chem. Phys. 48, 2240–2248 (1968)

    Article  Google Scholar 

  26. R. Ouillon, J.P. Pinanlucarre, P. Ranson, P. Pruzan, S.K. Mishra, R. Ranjan, D. Pandey, A Raman scattering study of the phase transitions in SrTiO3 and in the mixed system (Sr1–x Ca x )TiO3 at ambient pressure from T = 300 K down to 8 K. J. Phys. Condens. Matter. 14, 2079–2092 (2002)

    Article  Google Scholar 

  27. Z.Y. Shen, W.Q. Luo, Y.M. Li, Q.G. Hu, Z.M. Wang, X.Y. Gu, Electrical hetero-structure of Nd0.1Sr0.9TiO3 ceramic for energy storage applications. J. Mater. Sci. Mater. Electron. 24, 607–612 (2013)

    Article  Google Scholar 

  28. A. Chen, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  29. H.S. Shulman, D. Damjanovic, N. Setter, Niobium doping and dielectric anomalies in bismuth titanate. J. Am. Ceram. Soc. 83, 528–532 (2000)

    Article  Google Scholar 

  30. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Space-charge relaxation in perovskites. Phys. Rev. B Condens. Matter. 49, 7868–7873 (1994)

    Article  Google Scholar 

  31. D. Wu, A. Li, N. Ming, Dielectric characterization of Bi3.25La0.75Ti3O12 thin films. Appl. Phys. Lett. 84, 4505–4507 (2004)

    Article  Google Scholar 

  32. S. Saha, S.B. Krupanidhi, Impact of microstructure on the electrical stress induced effects of pulsed laser ablated (Ba, Sr)TiO3 thin films. J. Appl. Phys. 87, 3056–3062 (2000)

    Article  Google Scholar 

  33. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  Google Scholar 

  34. C. Ang, Z. Yu, High capacitance-temperature sensitivity and “giant” dielectric constant in SrTiO3. Appl. Phys. Lett. 90, 202903–202905 (2007)

    Article  Google Scholar 

  35. F.D. Morrison, D.C. Sinclair, A.R. West, Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. Int. J. Inorg. Mater. 3, 1205–1210 (2001)

    Article  Google Scholar 

  36. Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, Structure and dielectric properties of Re0.02Sr0.97TiO3 (Re = La, Sm, Gd, Er) ceramics for high-voltage capacitor applications. J. Am. Ceram. Soc. 96, 2551–2555 (2013)

    Article  Google Scholar 

  37. N. Qin, X.M. Chen, Modification of Ba6–3x Sm8+2x Ti18O54 (x = 2/3) microwave dielectric ceramics by Nd/Bi Co-substitution on A-site. Key Eng. Mater. 280–283, 57–60 (2005)

    Article  Google Scholar 

  38. T. Okawa, M. Imaeda, H. Ohsato, Site occupancy of Bi ions and microwave dielectric properties in Ba6–3 x Nd8+2 x Ti18O54 solid solutions. Mater. Sci. Eng. B 88, 58–61 (2002)

    Article  Google Scholar 

  39. H.S. Park, K.H. Yoon, E.S. Kim, Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1–x Ca x )[Fe0.5(Nb1–yTay)0.5]O3. J. Am. Ceram. Soc. 84, 99–103 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports of the National Natural Science Foundation of China (Grant No. 11464006) and the Natural Science Foundation of Guangxi (Grant No. 2014GXNSFBA118254) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yuan, C., Li, Q. et al. Effects of Bi3+ substitution on microwave dielectric properties of (Ce1−x Bi x )0.2Sr0.7TiO3 ceramics. J Mater Sci: Mater Electron 28, 9941–9949 (2017). https://doi.org/10.1007/s10854-017-6752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6752-6

Keywords

Navigation