Skip to main content

Advertisement

Log in

A high-performance supercapacitor electrode based on three-dimensional poly-rowed copper hydroxide nanorods on copper foam

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) poly-rowed copper hydroxide [Cu(OH)2] nanorods nanostructures have been synthesized on copper foam slices, using copper foam as copper source, current collector and 3D substrate, through a facile and scalable one-step anodization method. The synthesized products can be directly used as binder free electrodes of supercapacitors. The synthesized material exhibited a 3D connect and quasi connect network structure which can facilitate ion mobility and increase the amount of active sites for redox reactions. These merits together lead to a high areal specific capacitance of 1.889 F cm−2 at a scan rate of 2 mV s−1, excellent rate capability (75.39% retention upon increasing the current density by 15 times), low intrinsic resistance (0.792 Ω cm−2) and good cycling stability (87.23% capacitance retention after 5000 cycles), demonstrating a good potential for high performance energy storage devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, Nano Energy 20, 294–304 (2016)

    Article  Google Scholar 

  2. J.R. Miller, J. Power Sources 326, 726–735 (2016)

    Article  Google Scholar 

  3. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44(21), 7484–7539 (2015)

    Article  Google Scholar 

  4. M. Huang, Y. Zhang, F. Li, Z. Wang, N. Alamusi, Z. Hu, Q. Wen, Liu, Sci. Rep. 4, 4518 (2014)

    Article  Google Scholar 

  5. Y. Guo, Y.-T. Xu, B. Zhao, T. Wang, K. Zhang, M.M.F. Yuen, X.-Z. Fu, R. Sun, C.-P. Wong, J. Mater. Chem. A 3(26), 13653–13661 (2015)

    Article  Google Scholar 

  6. Y. Zhang, Z. Hu, Y. Liang, Y. Yang, N. An, Z. Li, H. Wu, J. Mater. Chem. A 3(29), 15057–15067 (2015)

    Article  Google Scholar 

  7. H. Liu, H. Song, X. Chen, S. Zhang, J. Zhou, Z. Ma, J. Power Sources 285, 303–309 (2015)

    Article  Google Scholar 

  8. P. Simon, Y. Gogotsi, B. Dunn, Science 343(6176), 1210–1211 (2014)

    Article  Google Scholar 

  9. E. Raymundo-Piñero, F. Leroux, F. Béguin, Adv. Mater. 18(14), 1877–1882 (2006)

    Article  Google Scholar 

  10. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, ACS Nano 4(3), 1337–1344 (2010)

    Article  Google Scholar 

  11. J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, Nano Energy 27, 230–237 (2016)

    Article  Google Scholar 

  12. S. Zhu, M. Wu, M.H. Ge, H. Zhang, S.K. Li, C.H. Li, J. Power Sources 306, 593–601 (2016)

    Article  Google Scholar 

  13. J. Yan, E. Khoo, A. Sumboja, P.S. Lee, Acs Nano 4(7), 4247–4255 (2010)

    Article  Google Scholar 

  14. S. Liu, K.S. Hui, K.N. Hui, ACS Appl. Mater. Interfaces 8(5), 3258–3267 (2016)

    Article  Google Scholar 

  15. C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang, Electrochim. Acta 173, 399–407 (2015)

    Article  Google Scholar 

  16. M. Huang, F. Li, X.L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, G. Li, Electrochim. Acta 152, 172–177 (2015)

    Article  Google Scholar 

  17. X. Wang, X. Wu, B. Xu, T. Hua, J. Solid State Electrochem. 20(5), 1303–1309 (2016)

    Article  Google Scholar 

  18. B. Rezaei, A.R.T. Jahromi, A.A. Ensafi, Int. J. Hydrogen Energy 42(26), 16538–16546 (2017)

    Article  Google Scholar 

  19. D. He, G. Liu, A. Pang, Y. Jiang, H. Suo, C. Zhao, Dalton Trans. 46(6), 1857–1863 (2017)

    Article  Google Scholar 

  20. H. Jiang, Y. Guo, T. Wang, P.-L. Zhu, S. Yu, Y. Yu, X.-Z. Fu, R. Sun, C.-P. Wong, RSC Adv. 5(17), 12931–12936 (2015)

    Article  Google Scholar 

  21. A. Pramanik, S. Maiti, S. Mahanty, Dalton Trans. 44(33), 14604–14612 (2015)

    Article  Google Scholar 

  22. G.D. Zhang, X.C. Liu, Y.H. Wang, C.Z. Liu, S.X. Xing, Chem. Eur. J. 23(23), 5557–5564 (2017)

    Article  Google Scholar 

  23. X. Zheng, X. Yan, Y. Sun, Y. Yu, G. Zhang, Y. Shen, Q. Liang, Q. Liao, Y. Zhang, J. Colloid Interface Sci. 466, 291–296 (2016)

    Article  Google Scholar 

  24. J. Min, J. Liu, M. Lei, W. Wang, Y. Lu, L. Yang, Q. Yang, G. Liu, N. Su, ACS Appl. Mater. Interfaces 8(1), 780–791 (2016)

    Article  Google Scholar 

  25. G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, M.K. Wu, F.Y. Yi, L. Han, Dalton Trans. 45(34), 13311–13316 (2016)

    Article  Google Scholar 

  26. J. Gao, X. Wang, Y. Zhang, J. Liu, Q. Lu, M. Chen, Y. Bai, Electrochim. Acta 192, 234–242 (2016)

    Article  Google Scholar 

  27. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, ACS Appl. Mater. Interfaces 7(8), 4851–4860 (2015)

    Article  Google Scholar 

  28. W. Gou, X. Zhou, J. Li, Y. Ma, Mater. Lett. 180, 207–211 (2016)

    Article  Google Scholar 

  29. J.Z. Chen, J.L. Xu, S. Zhou, N. Zhao, C.P. Wong, J. Mater. Chem. A 3(33), 17385–17391 (2015)

    Article  Google Scholar 

  30. W. Zhang, X. Wen, S. Yang, Y. Berta, Z.L. Wang, Adv. Mater. 15(10), 822–825 (2003)

    Article  Google Scholar 

  31. D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources 242, 687–698 (2013)

    Article  Google Scholar 

  32. T.M. Higgins, J.N. Coleman, ACS Appl. Mater. Interfaces 7(30), 16495–16506 (2015)

    Article  Google Scholar 

  33. D. He, J. Wan, H. Suo, C. Zhao, Mater. Lett. 185, 165–168 (2016)

    Article  Google Scholar 

  34. Y.K. Hsu, Y.C. Chen, Y.G. Lin, J. Electroanal. Chem. 673, 43–47 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant Nos. 61474056, 61374218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong He or Hui Suo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Pang, A., He, D. et al. A high-performance supercapacitor electrode based on three-dimensional poly-rowed copper hydroxide nanorods on copper foam. J Mater Sci: Mater Electron 29, 2660–2667 (2018). https://doi.org/10.1007/s10854-017-8192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8192-8

Navigation