Skip to main content
Log in

Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal–insulator–semiconductor (MIS) structure of Cu/Zr–WOx/p-Si Schottky diodes with different concentrations (0, 4 and 8 wt%) of Zr content were fabricated. The interfacial layer of zirconium–tungsten oxide (Zr–WOx) film was grown on p-type silicon (p-Si) wafer using jet nebulizer spray pyrolysis (JNSP) technique at the substrate temperature of 400 °C. After that, the Cu electrode was coated on the Zr–WOx film via vacuum deposition method. The multiphase (orthorhombic and cubic) crystal structures of Zr–WOx were revealed by X-ray diffraction (XRD) pattern. The surface morphological analysis using scanning electron microscope (SEM) showed the dissimilar structures of surface and energy dispersive X-ray diffraction (EDX) confirmed the presence of W, Zr and O atoms. Using UV–Visible (UV–Vis) and DC elecrical (I–V) analysis, the minimum band gap energy and average conductivity were obtained for higher concentration (8 wt%) of Zr content. The minimum barrier height (ΦB) and minimum ideality factor (n) values were attained for 4 wt% of Cu/Zr–WOx/p-Si Schottky barrier diode (SBD) under illumination condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Hashimoto, T. Hirokane, D. Kanzaki, S. Urabe, M. Morita, ECS Trans. 11, 7 (2008)

    Article  Google Scholar 

  2. Y. Fu, M. Willander, Appl. Phys. A 76, 27 (2003)

    Article  Google Scholar 

  3. L.H. Chong, K. Mallik, C.H. De Groot, Microelectron. Eng. 81, 171 (2005)

    Article  Google Scholar 

  4. C.H. Lin, C.W. Liu, Sensors 10, 8797 (2010)

    Article  Google Scholar 

  5. H.K. Tyagi, P.J. George, J. Mater. Sci. Mater. Electron. 19, 902 (2008)

    Article  Google Scholar 

  6. A. Shetty, B. Roul, S. Mukundan, L. Mohan, G. Chandan, K.J. Vinoy, S.B. Krupanidhi, AIP Adv. 5, 097101–097103 (2015)

    Article  Google Scholar 

  7. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, Ş. Altındal, J. Mater. Sci. Mater. Electron 28, 4951 (2017)

    Article  Google Scholar 

  8. M. Soylu, M. Cavas, A.A. Aghamdi, O.A.A. Hartomy, F.E. Tantawy, F. Yakuphanoglu, J. Optoelectron. Adv. Mater. 14, 61 (2012)

    Google Scholar 

  9. N. Balaram, M.S. Pratap, V. Rajagopal, Thin Solid Films 619, 231 (2016)

    Article  Google Scholar 

  10. F. Wang, C. Di Valentin, G. Pacchioni, Chem. Cat. Chem. 4, 476 (2012)

    Google Scholar 

  11. S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, G. Sberveglieri, Sens. Actuators B 111, 111 (2005)

    Article  Google Scholar 

  12. Y. Liu, W.M. Tang, P.T. Lai, Appl. Phys. Lett. 107, 073500–073506 (2015)

    Google Scholar 

  13. H. Simchi, B.E. McCandless, T. Meng, W.N. Shafarman, J. Alloys Compd. 617, 609 (2014)

    Article  Google Scholar 

  14. V.V. Ganbavle, G.L. Agawane, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, J. Mater. Eng. Perform. 23, 1204 (2014)

    Article  Google Scholar 

  15. C. Charles, N. Martin, M. Devel, J. Ollitrault, A. Billard, Thin Solid Films 534, 275 (2013)

    Article  Google Scholar 

  16. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Langmuir 18, 7777 (2002)

    Article  Google Scholar 

  17. S. Wang, X. Zhang, G. Cheng, X. Jiang, Y. Li, Chem. Phys. Lett. 405, 63 (2005)

    Article  Google Scholar 

  18. S. Zhuiykov, Mater. Lett. 165, 173 (2016)

    Article  Google Scholar 

  19. V.R. Bucha, A.K. Chawlab, S.K. Rawalc, Mater. Today Proceed. 3, 1429 (2016)

    Article  Google Scholar 

  20. X. Mua, X. Yua, D. Xua, X. Hena, Z. Xiab, H. Hea, H. Zhua, J. Xiea, B. Sunb, D. Yanga, Nano Energy 16, 54 (2015)

    Article  Google Scholar 

  21. D. Xua, X. Yua, D. Gaoa, C. Lia, M. Zhonga, H. Zhua, S. Yuana, Z. Linb, D. Yanga, J. Mater. Chem. A 4, 10558 (2013)

    Article  Google Scholar 

  22. R. Lampande, G.W. Kim, J. Boizot, Y.J. Kim, R. Podeb, J.H. Kwon, J. Mater. Chem. A 1, 6895–6900 (2013)

    Article  Google Scholar 

  23. Y.H. Kim, S. Kwon, J.H. Lee, S.M. Park, Y.M. Lee, J.W. Kim, J. Phys. Chem. C 115, 6599 (2011)

    Article  Google Scholar 

  24. Z. Zhang, M. Wan, Synth. Metal. 128, 83 (2002)

    Article  Google Scholar 

  25. R.K. Gupta, R.A. Singh, J. Poly. Res. 11, 269 (2004)

    Article  Google Scholar 

  26. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  Google Scholar 

  27. S. Ashok, J.M. Borrego, R.J. Guttmann, Solid. State. Electron. 22, 621 (1979)

    Article  Google Scholar 

  28. A.A. Taysioglu, K. Erturk, M.C. Haciismailoglu, N. Derebasi, J. Optoelectron. Adv. Mater. 10, 356 (2008)

    Google Scholar 

  29. S. Karadeniz, N. Tugluoglua, T. Serin, Appl. Surf. Sci 233, 5 (2004)

    Article  Google Scholar 

  30. T. Yamaguchi, H. Satake, N. Fukushima, Appl. Phys. Lett. 80, 1987 (2002)

    Article  Google Scholar 

  31. S.W. Kim, S.H. Kim, G.S. Kim, C. Choi, R. Choi, H.Y. Yu, ACS Appl. Mater. Interfaces 8, 35614 (2016)

    Article  Google Scholar 

  32. T. Kobayashi, M. Tonouchi, Y. Sakaguchi, T. Yamashita, Jpn. J. Appl. Phys. 26, L50 (1987)

    Article  Google Scholar 

  33. K.M. Chang, C.C. Cheng, C.C. Lang, Solid State Electron. 46, 1399 (2002)

    Article  Google Scholar 

  34. T. Hashizume, E. Alekseev, D. Pavlidis, K.S. Boutros, J. Redwing, J. Appl. Phys. 88, 1983 (2000)

    Article  Google Scholar 

  35. M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)

    Article  Google Scholar 

  36. N. Sethupathi, P. Thirunavukkarasu, V.S. Vidhya, R. Thangamuthu, G.V.M. Kiruthika, K. Perumal, H.C. Bajaj, M. Jayachandran, J. Mater. Sci. Mater. Electron 23, 1087 (2012)

    Article  Google Scholar 

  37. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  Google Scholar 

  38. R. Paul, R.N. Gayen, S. Biswas, S. Venkataprasad Bhatd, R. Bhunia, RSC Adv. 00, 1 (2013)

    Google Scholar 

  39. C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, Nucl. Eng. Technol. 47, 323 (2015)

  40. H.L. Chen, Y.M. Lu, W.S. Hwang, Mater. Transact. 46, 872 (2005)

    Article  Google Scholar 

  41. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  Google Scholar 

  42. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Optik (2017) https://doi.org/10.1016/j.ijleo.2017.07.049

    Google Scholar 

  43. R. Vinodkumar, I. Navas, K.P. Porsezian, N.V. Unnikrishnan, V.P.M. Pillai, Spectrochim. Acta. Mol. Biomol. Spectrosc. 118, 724 (2014)

    Article  Google Scholar 

  44. V. Nirupama, M. Chandrasekhar, P. Radhika, B. Sreedhar, S. Uthanna, J. Optoelectron. Adv. Mater. 11, 320–325 (2009)

    Google Scholar 

  45. V. Nirupama, M. Chandrasekhar, T.K. Subramanyam, S. Uthanna, J. Phys. 208, 012101 (2010)

    Google Scholar 

  46. S.M. Sze, (2nd edn.) Semiconductor Devices. (Wiley New York, 2001) p. 224

    Google Scholar 

  47. B. Keskin, C. Denktas, A. Altındal, U. Avcıata, A. Gul, Polyhedron 38, 121 (2012)

    Article  Google Scholar 

  48. L.R. Canfield, R. Vest, T.N. Woods, R. Korde, Ultrav. Technol. V 31, 2282 (1994)

    Google Scholar 

  49. M. Biber, O. Gullu, S. Forment, R.L. Van Meirhaeghe, A. Turut, Semicond. Sci. Technol. 21, 1 (2006)

    Article  Google Scholar 

  50. H. Dogan, N. Yildrim, A. Turut, Microelectron. Eng. 85, 655 (2008)

    Article  Google Scholar 

  51. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Clarendon Press, Oxford, 1988)

    Google Scholar 

  52. N. Senthil kumar, M. Sethu Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Mater. Sci. Semicond. Process. 41, 497 (2016)

    Article  Google Scholar 

  53. M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, J. Mater. Sci. Mater. Electron. 27, 11646 (2016)

    Article  Google Scholar 

  54. F.C. Chiu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research project (EMR/2016/007874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marnadu, R., Chandrasekaran, J., Raja, M. et al. Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. J Mater Sci: Mater Electron 29, 2618–2627 (2018). https://doi.org/10.1007/s10854-017-8187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8187-5

Navigation