Skip to main content
Log in

Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, CuFe2O4 nanoparticles were synthesized using chemical co-precipitation method. The tetragonal phase formation of CuFe2O4 nanoparticles was confirmed by X-ray diffraction technique with its Rietveld refinement data, TEM and SEM analysis. The particle size of CuFe2O4 nanoparticles was found to be 6.4 ± 1 nm using Scherrer formula and TEM analysis. The surface morphology and porosity of CuFe2O4 nanoparticles and its sensing device were analysed using TEM, SEM and AFM images. The CuFe2O4 sensor was tested towards NH3, NO2, SO2 and smoke as change in conductance in terms of impedance spectroscopy with the help of electrochemical workstation. The performance of the sensor was investigated in the form of sensitivity, response and recovery time. The sensitivity was observed in the following order NH3 > NO2 > SO2 > smoke with response and recovery time 8 s and 5 min respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Rathore, R. Kurchania, R.K. Pandey, Structural, magnetic and dielectric properties of Ni1 – xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles synthesized by chemical co-precipitation method. J. Nanosci. Nanotechnol. 13, 1812–1819 (2013)

    Article  Google Scholar 

  2. C.E. Rodrıguez, Torres et al., Oxygen-vacancy-induced local ferromagnetism as a driving mechanism in enhancing the magnetic response of ferrites. Phys. Rev. B 89, 104411 (2014)

    Article  Google Scholar 

  3. C. Reitz, C. Suchomski, J. Haetge, T. Leichtweiss, Z. Jaglicic, I. Djerdj, T. Brezesinski, Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains. Chem. Commun. 48, 4471–4473 (2012)

    Article  Google Scholar 

  4. S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B 77, 172–176 (2000)

    Article  Google Scholar 

  5. T.G. Nenov, S.P. Yordanov, Ceramic Sensors, Technology and Application (CRC Press, Lancaster, 1996), pp. 20–42

    Google Scholar 

  6. J.U. Keller, R. Staudt, Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherm (Springer, New York, 2006), pp. 17–52

    Google Scholar 

  7. K. Oura et al., Surface Science (Springer, Berlin, 2003), pp. 295–322

    Google Scholar 

  8. M.C. Desjonqueres, D. Spanjaard, Concept in Surface Physics, 2nd edn. (Springer, Berlin, 2012), pp. 162–267

    Google Scholar 

  9. S. Singh, B.C. Yadav, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)

    Article  Google Scholar 

  10. Z. Shahnavaz, F. Lorestani, W.P. Meng, Y. Alias, Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose. J. Solid State Electrochem. (2015). doi:10.1007/s10008-015-2738-6

    Google Scholar 

  11. P. Srivastava, A. Garg, Emissions from forest fires in India—as assessment based on MODIS fire and global land cover products. Clim. Change Environ. Sustain. 1, 138–144 (2013)

    Article  Google Scholar 

  12. Z. Sun, L. Liu, D.Z. Jia, W. Pan,; Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens. Actuators B. 125, 144–148 (2007)

    Article  Google Scholar 

  13. J.L. Martinez Hurtado, C.R. Lowe, Ammonia-sensitive photonic structures fabricated in nafion membranes by laser ablation. Appl. Mater. Interfaces. 6, 8903–8908 (2014)

    Article  Google Scholar 

  14. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley, Morris Cohen, 1956), pp. 284–287

    Google Scholar 

  15. R. Kurchania, D. Rathore, R.K. Pandey, Size dependent strain and nanomagnetism in CoFe2O4 nanoparticles. J Mater. Sci. 26, 9355–9365 (2015)

    Google Scholar 

  16. B. Timmer, W. Olthuis, A.V.D. Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107, 666–677 (2005)

    Article  Google Scholar 

  17. D. Rathore, R. Kurchania, R.K. Pandey, Fabrication of Ni1 – xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles gas sensor for some reducing gases. Sens. Actuators A 199, 236–240 (2013)

    Article  Google Scholar 

  18. D. Rathore, R. Kurchania, R.K. Pandey, Gas sensing properties of size varying CoFe2O4 nanoparticles. IEEE Sens. 15, 4961–4966 (2015)

    Article  Google Scholar 

  19. D. Rathore, R. Kurchania, R.K. Pandey, Influence of particle size and temperature on the dielectric properties of CoFe2O4 nanoparticles. Int. J. Min. Metall. Mater. 21, 408–412 (2014)

    Article  Google Scholar 

  20. M.A.L. Nobre, S. Lanfredi, Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy. J. Phys. Chem. Solids 62, 1999–2006 (2001)

    Article  Google Scholar 

  21. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Electric conductivity and relaxation in fluoride, fluorophosphates and phosphate glasses: analysis by impedance spectroscopy. Solid State Ion. 146, 329–339 (2002)

    Article  Google Scholar 

  22. K.P. Padmasree, D.K. Kanchan, A.k Kulkarni, Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3. Solid State Ion. 177, 475–482 (2006)

    Article  Google Scholar 

  23. R.J. Grant, M.D. Ingram, L.D.S. Turner, C.A. Vincent, Optimized ionic conductivity in glass. Vitreous silver arsenate iodide (Ag7I4AsO4) electrolytes. J. Phys. Chem. 82, 2838–2844 (1978)

    Article  Google Scholar 

  24. A.K. Jonscher, Analysis of the alternating current properties of ionic conductors., J. Mater. Sci. 13, 553–562 (1978)

    Article  Google Scholar 

  25. P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. Sci. Jet 4, 126 (2015)

    Google Scholar 

  26. C.N. Hussain, B. Kharisov, Advanced Environmental Analysis: Applications of Nanomaterials, vol. 2 (Royal Society of Chemistry, Cambridge, 2016), pp. 56–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepshikha Rathore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, D., Mitra, S., Kurchania, R. et al. Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor. J Mater Sci: Mater Electron 29, 1925–1932 (2018). https://doi.org/10.1007/s10854-017-8102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8102-0

Navigation