Skip to main content

Advertisement

Log in

Properties of nickel doped In2S3 thin films deposited by spray pyrolysis technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, nickel (Ni) doped indium sulfide (In2S3) films have been prepared by the spray pyrolysis (CSP) technique on glass substrates at 350 °C. The Ni doping level was changed with Ni:In (0, 2 and 4% in solution). The structural studies reveal that the deposited films are polycrystalline in nature exhibiting cubic structure. The crystallite size decreases from 27.5 to 23 nm and the root mean square roughness values increase from 13 to 18 nm. The transmission coefficient is about 70–55% in the visible region and 85–75% in near-infrared region. The band gap energy increases with nickel content from 2.74 to 2.82 eV for direct transitions. The refractive index values of In2S3:Ni thin films decrease from 2.43 to 2.40 and the extinction coefficient values are in the range 0.01–0.20. Besides, the AC conductivity contribution is interpreted using the universal Jonscher’s power law and it is found thermally activated and it can be described by the correlated barrier-hopping models. These studies help to form significant correlation between temperature and activation energy. Nyquist plots show that the electrical response is accurately fitted by the Cole–Cole model and represented by an equivalent electrical circuit which consists of a parallel combination of a resistance and a constant phase element. From this analysis, the evidence of grain boundary conduction has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.A. El Sbazly, D. AbdElhady, H.S. Metwally, M.A.M. Seyam, J. Phys. 10, 5943–5954 (1998)

    Google Scholar 

  2. M. Kilani, B. Yahmadi, N.K. Turki, M. Castagné, J. Mater. Sci. 46, 6293–6300 (2011)

    Article  Google Scholar 

  3. K. Hara, K. Sayama, H. Arakawa, Sol. Energy Mater. Sol. Cells 62, 441–447 (2000)

    Article  Google Scholar 

  4. R. Nomura, S. Inazawa, K. Kanaya, H. Matsuda, Appl. Organomet. Chem. 3, 195–197 (1989)

    Article  Google Scholar 

  5. E. Dalas, L. Kobotiatis, J. Mater. Sci. 28, 6595–6597 (1993)

    Article  Google Scholar 

  6. Y. He, D. Li, G. Xiao, W. Chen, Y. Chen, M. Sun, H. Huang. X. Fu, J. Phys. Chem. C, 113, 5254–5262 (2009)

    Article  Google Scholar 

  7. N. Barreau, Sol. Energy 83, 363–371 (2009)

    Article  Google Scholar 

  8. D. Braunger, D. Hariskos, T. Walter, H.W. Schock, Sol. Energy Mater. Sol. Cells 40, 97–102 (1996)

    Article  Google Scholar 

  9. S. Cingarapu, M.A. Ikenberry, D.B. Hamal, C.M. Sorensen, K. Hohn, K.J. Klabunde, Langmuir 28, 3569–3575 (2012)

    Article  Google Scholar 

  10. L.J. Liu, W.D. Xiang, J.S. Zhong, X.Y. Yang, X.J. Liang, H.T. Liu, W. Cai, J. Alloys Compd. 493, 309–313 (2010)

    Article  Google Scholar 

  11. Z. Li, X. Tao, Z. Wu, P. Zhang, Z. Zhang, Ultrason. Sonochem. 16, 221–224 (2009)

    Article  Google Scholar 

  12. H. Spasevska, C.C. Kitts, C. Ancora, G. Ruani, Int. J. Photoenergy (2011). doi:10.1155/2012/637943

    Google Scholar 

  13. A. Akkari, C. Guasch, M. Castagne, N. Ka. Turki, J. Mater. Sci. 46, 6285–6292 (2011)

    Article  Google Scholar 

  14. A. Timoumi, H. Bouzouita, B. Rezig, Thin Solid Films 519, 7615–7619 (2011)

    Article  Google Scholar 

  15. J.J. Lee, J.D. Lee, B.Y. Ahn, K.H. Kim, J. Korean Phys. Soc. 53, 3255–3261 (2008)

    Article  Google Scholar 

  16. S. Ghosh, M. Saha, V.D. Ashok, A. Chatterjee, S.K. De, Nanotechnology 27, 155708 (2016)

    Article  Google Scholar 

  17. R. Lucena, J.C. Conesa, I. Aguilera, P. Palacios, P. Wahnon, J. Mater. Chem. A 2, 8236–8245 (2014)

    Article  Google Scholar 

  18. B. Asenjo, J. Herrero, M. Teresa, Gutiérrez, Mater. Res. Soc. Symp. Proc. 1165, M05–M08 (2009)

    Article  Google Scholar 

  19. B.D. Cullity, Elements of X-ray Diffraction. (Addison-Wesley, Reading, 1978)

    Google Scholar 

  20. A. Khorsand. W.H. Zak, M.E. Abd.Majid, R. Abrishami, Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  Google Scholar 

  21. K. Ravichandran, P. Philominathan, Sol. Energy 82, 1062–1066 (2008)

    Article  Google Scholar 

  22. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103–108 (2005)

    Article  Google Scholar 

  23. P. Roy, S.K. Srivastava, Thin Solid Films 496, 293–298 (2006)

    Article  Google Scholar 

  24. G.B. Kamath, C.M. Joseph, C.S. Menon, Mater. Lett. 57, 730–733 (2002)

    Article  Google Scholar 

  25. S. Rajeh, A. Mhamdi, K. Khirouni, M. Amlouk, S. Guermazi, Opt. Laser Technol. 69, 113–121 (2015)

    Article  Google Scholar 

  26. M. Kraini, N. Bouguila, I. Halidou, A. Timoumi, S. Alaya, Mater. Sci. Semicond. Process. 16, 1388–1396 (2013)

    Article  Google Scholar 

  27. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  28. M. Kraini, N. Bouguila, I. Halidou, A. Moadhen, C. Vázquez-Vázquez, M.A. López-Quintela, S. Alaya, J. Electron. Mater. 44, 2536–2543 (2015)

    Article  Google Scholar 

  29. J. Koaib, N. Bouguila, M. Kraini, A. Mhamdi, I. Halidou, M. Ben Salem, H. Bouzouita, S. Alaya, J. Mater. Sci.: Mater. Electron. 27, 9216–9225 (2016)

    Google Scholar 

  30. M. Kraini, N. Bouguila, J. Koaib, C. Vázquez-Vázquez, M.A. López-Quintela, S. Alaya, J. Electron. Mater. 45, 5936–5947 (2016)

    Article  Google Scholar 

  31. C. Guillén, T. Garcia, J. Herrero, M.T. Gutiérrez, F. Briones, Thin Solid Films 451, 112–115 (2004)

    Article  Google Scholar 

  32. P.J.L. Herve, L.K.J. Vandamme, J. Appl. Phys. 77, 5476–5477 (1995)

    Article  Google Scholar 

  33. S.P. Nehra, S. Chander, A. Sharma, M.S. Dhaka, Mater. Sci. Semicond. Process. 40, 26–34 (2015)

    Article  Google Scholar 

  34. M.M. El-Nahass, B.A. Khalifa, H.S. Soliman, M.A.M. Seyam, Thin Solid Films 515, 1796–1801 (2006)

    Article  Google Scholar 

  35. A. Timoumi, H. Bouzouita, B. Rezig, Aust. J. Basic Appl. Sci. 7, 448–456 (2013)

    Google Scholar 

  36. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  37. N.F. Mott, E.A. Davis, Electronic Process in Non-crystalline Materials. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  38. D.K. Pradhan, B.K. Samantary, R.N.P. Chaudhary, A.K. Thakur, Mater. Sci. Eng. B 116, 7 (2005)

    Article  Google Scholar 

  39. A.A. Atta, J. Alloys Compd 480, 564 (2009)

    Article  Google Scholar 

  40. A.A. Dakhel, J. Phys. Chem. Solids 65, 1765 (2004)

    Article  Google Scholar 

  41. F. Salman, Turk. J. Phys. 28, 41 (2004)

    Google Scholar 

  42. B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Mater. Charact. 70, 1–7 (2012)

    Article  Google Scholar 

  43. P. Zoltowski, J. Electroanal. Chem. 443, 149 (1998)

    Article  Google Scholar 

  44. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10, 165 (2003)

    Article  Google Scholar 

  45. J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta 51, 1473 (2006)

    Article  Google Scholar 

  46. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Compd. 540, 267 (2012)

    Article  Google Scholar 

  47. M. Nadeem, M.J. Akhtar, J. App. Phys. 104, 103713 (2008)

    Article  Google Scholar 

  48. M. Younes, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 93704 (2010)

    Article  Google Scholar 

  49. T. Nagata, T. Shimura, A. Ashida, N. Fujimura, T. Ito, J. Cryst. Growth 533, 237 (2002)

    Google Scholar 

  50. P.S. Anantha, K. Harharan, Mat. Sci. Eng. B 121, 12 (2005)

    Article  Google Scholar 

  51. R. Bellouz, S. Kallel, K. Khirouni, O. Pena, M. Oumezzin, Ceram. Int. 41, 1929 (2015)

    Article  Google Scholar 

  52. W. Cao, R. Gerhardt, Solid State Ion. 42, 213 (1990)

    Article  Google Scholar 

  53. V. Hornebecq, C. Elissalde, V. Porokhonskyy, V. Bovtun, J. Petzelt, I. Gregora, M. Maglione, J. Ravez, J. Phys. Chem. Solids 64, 471 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research, MINECO (Spain), FEDER Funds (Projects MAT2015-67458-P and CTQ2016-79461-R) and Fundación Ramón Areces, Spain (Project 2016-PO024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kraini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraini, M., Bouguila, N., Moutia, N. et al. Properties of nickel doped In2S3 thin films deposited by spray pyrolysis technique. J Mater Sci: Mater Electron 29, 1888–1906 (2018). https://doi.org/10.1007/s10854-017-8099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8099-4

Navigation