Skip to main content
Log in

Opto-electronic and antibacterial activity investigations of mono-dispersed nanostructure copper oxide prepared by a novel method: reduction of reactive oxygen species (ROS)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel approach for synthesis of copper oxide nanoparticles is reported by separation of nucleation and growth. The nano-material was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV–Vis diffuse reflectance spectroscopy, transmission electron microscopy, atomic force microscopy, and Brunauer–Emmett–Teller analyses. Optical analysis of mono-dispersed nanostructure copper oxide by UV–Vis diffused reflectance spectroscopy showed the band gap value of 1.47 eV with a blue-shift in the optical band gap due to quantum confinement effect. The dynamic light scattering and zeta potential results showed fairly narrow size distribution and colloidal stability. The results showed that nano-particles were mono-dispersed spheres of 8 nm with no aggregation. Cell viability of treated murine fibroblast cell line (L-929) treated by different concentrations of nanoparticles showed significant viability up to 96% at concentrations 15 and 30 μg ml−1. The nanoparticles exhibited outstanding and stable antibacterial activity against Staphylococcus aureus ATCC 6538 at 30 µg ml−1. The viability and reactive oxygen species (ROS) generation in the L-929 cell line indicated that the nanoparticles were not toxic at the concentrations which were effective on bacteria. ROS analysis using DCFH-DA probe on L-929 were exposed to 7.5–60 μg ml−1 of copper oxide nanoparticles in 6 h revealed ROS generation was decreased dramatically compare to the untreated cells and positive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.M. Momeni, M. Mirhosseini, Z. Nazari, A. Kazempour, M. Hakimiyan, J. Mater. Sci.: Mater. Electron. 27, 10147 (2016)

    Google Scholar 

  2. M.M. Momeni, N. Mohammadi, M. Mirhosseini, J. Mater. Sci.: Mater. Electron. 27, 8131 (2016)

    Google Scholar 

  3. M. Bibi, Q. Javed, H. Abbas, S. Baqi, Mater. Chem. Phys. 192, 67 (2017)

    Article  Google Scholar 

  4. K. Malaie, M.R. Ganjali, T. Alizadeh, P. Norouzi, J. Mater. Sci.: Mater. Electron. 28, 14631 (2017)

    Google Scholar 

  5. A.D. Faisal, W.K. Khalef, J. Mater. Sci.: Mater. Electron. (2017). doi:10.1007/s10854-017-7844-z

    Google Scholar 

  6. M. Nesa, M. Sharmin, K.S. Hossain et al., J. Mater. Sci.: Mater. Electron. 28, 12523 (2017)

    Google Scholar 

  7. S. Singh, A. Bharti, V.K.J. Meena, J. Mater. Sci.: Mater. Electron. 26, 3638 (2015)

    Google Scholar 

  8. A. Allahverdiyev, K. Kon, E. Abamor, M. Bagirova, M. Rafailovich, Expert Rev. Anti-Infect. Ther. 9, 1035 (2011)

    Article  Google Scholar 

  9. A. Huh, Y. Kwon, J. Controlled Release 156, 128 (2011)

    Article  Google Scholar 

  10. P. Gao, X. Nie, M. Zou, Y. Shi, G. Cheng, J. Antibiot. 64, 625 (2011)

    Article  Google Scholar 

  11. G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, E. Banin, Small 8, 3326 (2012)

    Article  Google Scholar 

  12. M. Kung, M. Tai, P. Lin, D. Wu, W. Wu, B. Yeh, H. Hung, C. Kuo, Y. Chen, S. Hsieh, S. Hsieh, Colloids Surf. B 155, 399 (2017)

    Article  Google Scholar 

  13. R. Pelgrift, A. Friedman, Adv. Drug Deliv. Rev. 65, 1803 (2013)

    Article  Google Scholar 

  14. G. Wyszogrodzka, B. Marszałek, B. Gil, P. Dorożyński, Drug Discov. Today 21, 1009 (2016)

    Article  Google Scholar 

  15. G. Borkow, J. Gabbay, R. Zatcoff, Med. Hypotheses 70, 610 (2008)

    Article  Google Scholar 

  16. G. Borkow, J. Gabbay, R. Dardik, A. Eidelman, Y. Lavie, Y. Grunfeld, S. Ikher, M. Huszar, R. Zatcoff, M. Marikovsky, Wound Repair Regen. 18, 266 (2010)

    Article  Google Scholar 

  17. A. Azam, A. Ahmed, M. Oves, M. Khan, A. Memic, Int. J. Nanomed. 7, 3527 (2012)

    Article  Google Scholar 

  18. Z. Zhuang, Q. Peng, Y. Li, Chem. Soc. Rev. 40, 5492 (2011)

    Article  Google Scholar 

  19. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater. Sci. 60, 208 (2014)

    Article  Google Scholar 

  20. K. Dey, A. Kumar, R. Shanker, A. Dhawan, M. Wan, R. Yadav, A. Srivastava, RSC Adv. 2, 1387 (2012)

    Article  Google Scholar 

  21. A. Ethiraj, D.J. Kang, Nanoscale Res. Lett. 7, 70 (2012)

    Article  Google Scholar 

  22. Y. Zhao, J. Zhao, Y. Li, D. Ma, Nanotechnology 22, 115604 (2011)

    Article  Google Scholar 

  23. K. Zhou, R. Wang, B. Xu, Y. Li, Nanotechnology 17, 3939 (2006)

    Article  Google Scholar 

  24. J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, Mater. Chem. Phys. 109, 34 (2008)

    Article  Google Scholar 

  25. M. Kung, S. Hsieh, C. Wu, T. Chu, Y. Lin, B. Yeh, S. Hsieh, Nanoscale 7, 1820 (2015)

    Article  Google Scholar 

  26. J. Polte, CrystEngComm 17, 6809 (2015)

    Article  Google Scholar 

  27. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Energy Procedia 34, 740 (2013)

    Article  Google Scholar 

  28. A. Chatterjee, R. Chakraborty, T. Basu, Nanotechnology 25, 135101 (2014)

    Article  Google Scholar 

  29. D. Das, B. Nath, P. Phukon, S.K. Dolui, Colloids Surf. B 101, 430 (2013)

    Article  Google Scholar 

  30. F. Duman, I. Ocsoy, F. Kup, Mater. Sci. Eng. C 60, 333 (2016)

    Article  Google Scholar 

  31. S. Khan, A. Ansari, A. Khan, M. Abdulla, O. Al-Obaid, R. Ahmad, Colloids Surf. B 153, 320 (2017)

    Article  Google Scholar 

  32. G. Ren, D. Hu, E. Cheng, M. Vargas-Reus, P. Reip, R. Allaker, Int. J. Antimicrob. Agents 33, 587 (2009)

    Article  Google Scholar 

  33. J. Zhu, H. Wang, X. Wang, X. Yang, L. Lu, Mater. Lett. 61, 5236 (2007)

    Article  Google Scholar 

  34. Y. Cudennec, A. Lecerf, Solid State Sci. 5, 1471 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Isfahan for support of this work. A special thanks to Dr. Fereshteh Jabalameli; jabalamf@tums.ac.ir and Dr. Mohammad Emaneini; emaneini@tums.ac.ir, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, for their gracious gift of Staphylococci isolates which were used in this investigation. Moreover, the authors gratefully acknowledge the Fahimdokht Mokhtari; mfahimdokht@gmail.com, Faculty of Food Industry and Agriculture, Department of Microbiology, Standard Research Institute (SRI) for providing the ATCC standard bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giti Emtiazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, Z., Emtiazi, G. & Zarrabi, A. Opto-electronic and antibacterial activity investigations of mono-dispersed nanostructure copper oxide prepared by a novel method: reduction of reactive oxygen species (ROS). J Mater Sci: Mater Electron 29, 1798–1807 (2018). https://doi.org/10.1007/s10854-017-8088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8088-7

Navigation