Skip to main content
Log in

Characterization of transparent semiconducting cobalt doped titanium dioxide thin films prepared by sol–gel process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the synthesis of TiO2 and Cobalt doped TiO2 (CoT) thin films by sol–gel process and the influence of dopant incorporation onto the structural, optical and electrical properties of the host lattice is analysed. The XRD analysis shows the reduction of crystal size with increasing Co dopant concentration. FESEM analysis confirmed the agglomeration of particles in CoT films upon Co doping. Vibrational modes of the anatase phase of TiO2 along with the weak intensity peaks for cobalt doped samples have been identified in Raman spectroscopy. The average transmittance of the films decreases with an increase in the surface roughness and decrease in the crystallinity of the films. Red shift in the energy gap is observed with the increase in the cobalt dopant concentration due to the defect state formation in the band gap. Surface roughness of the samples increases from 0.646 to 6.486 nm. Room temperature photoluminescence (PL) measurements confirmed the increase of F+ colour centres in cobalt doped films. I–V measurements indicate the ohmic behaviour of TiO2 films with the increase of resistivity from 2.707 × 103 to 7.699 × 103 Ω-cm for the samples with cobalt content. The increase in resistivity due to dopant incorporation is significant from its application point of view and is evaluated using grain boundary model. It was observed that by increasing cobalt doping level in TiO2 the surface trap density increases and implicitly the conductivity decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Sieradzka, J. Domaradzki, E. Prociow, M. Mazur, M. Lapinski, Properties of nanocrystalline TiO2: V thin films as a transparent semiconducting oxides. Proc. III Natio. Conc. Nano 116, 33–35 (2009)

    Google Scholar 

  2. I.A. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz, Anatase TiO2 films based CO gas sensor: film thickness, substrate and temperature effects. Appl. Surf. Sci. 253, 8607–8614 (2007). doi:10.1016/j.apsusc.2007.04.068

    Article  Google Scholar 

  3. V. Pore, M. Dimri, H. Khanduri, R. Stern, J. Lu, L. Hultman, K. Kukli, M. Ritala, M. Leskelä, Atomic layer deposition of ferromagnetic cobalt doped titanium oxide thin films. Thin Solid Films 519, 3318–3324 (2011). doi:10.1016/j.tsf.2011.01.191

    Article  Google Scholar 

  4. M. Horprathum, P. Chindaudom, P. Limsuwan, A spectroscopic ellipsometry study of TiO2 thin films prepared by dc reactive magnetron sputtering: annealing temperature effect. Chin. Phys. Lett. 24, 1505–1508 (2007). doi:10.1088/0256-307x/24/6/021

    Article  Google Scholar 

  5. V.C. Anitha, A.N. Banerjee, S.W. Joo, Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J. Mater. Sci. 50, 7495–7536 (2015). doi:10.1007/s10853-015-9303-7

    Article  Google Scholar 

  6. Y.Q. Chang, P.W. Wang, S.L. Ni, Y. Long, X.D. Li, Influence of Co Content on Raman and Photoluminescence Spectra of Co Doped ZnO Nanowires. J. Mater. Sci. Technol. 28, 313–316 (2012). doi:10.1016/S1005-0302(12)60060-7

    Article  Google Scholar 

  7. A. Boutlala, F. Bourfaa, M. Mahtili, A. Bouaballou, Deposition of Co-doped TiO2 Thin Films by sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 108, 12048 (2016). doi:10.1088/1757-899X/108/1/012048

    Article  Google Scholar 

  8. N. Rajkumar, K. Ramachandran, IEEE Trans Nanotechnol 10, 513–519 (2011)

    Article  Google Scholar 

  9. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, R. Jayavel, Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process. Thin Solid Films 516, 3776–3782 (2008). doi:10.1016/j.tsf.2007.06.125

    Article  Google Scholar 

  10. E.R. Shaaban, M. El-Hagary, E.S. Moustafa, H.S. Hassan, Y.A.M. Ismail, M. Emam-Ismail, A.S. Ali, Structural, linear and nonlinear optical properties of co-doped ZnO thin films. Appl. Phys. A 122, 20 (2016). doi:10.1007/s00339-015-9551-z

    Article  Google Scholar 

  11. J. Ben Naceur, R. Mechiakh, F. Bousbih, R. Chtourou, Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating. Appl. Surf. Sci. 257, 10699–10703 (2011). doi:10.1016/j.apsusc.2011.07.082

    Article  Google Scholar 

  12. M. Vishwas, K. Narasimha Rao, R.P.S. Chakradhar, Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO2 thin films. Spectrochim. Acta Part A 99, 33–36 (2012). doi:10.1016/j.saa.2012.09.009

    Article  Google Scholar 

  13. M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett. 7, 1 (2012). doi:10.1186/1556-276X-7-1

    Article  Google Scholar 

  14. L. Mahoney, R. Peng, C.-M. Wu, J. Baltrusaitis, R.T. Koodali, Solar simulated hydrogen evolution using cobalt oxide nanoclusters deposited on titanium dioxide mesoporous materials prepared by evaporation induced self-assembly process. Int. J. Hydrogen Energy 40, 10795–10806 (2015). doi:10.1016/j.ijhydene.2015.06.155

    Article  Google Scholar 

  15. B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, S. Velumani, Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films. Sol. Energy Mater. Sol. Cells 88, 199–208 (2005). doi:10.1016/j.solmat.2004.03.008

    Article  Google Scholar 

  16. J.a Najim, J.M. Rozaiq, Effect Cd doping on the structural and optical properties of ZnO thin films. Int. Lett. Chem. Phys. Astron. 10, 137–150 (2013). doi:10.18052/www.scipress.com/ILCPA.15.137

    Article  Google Scholar 

  17. M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, K. Sethuraman, Investigation on the pure and fluorine doped vanadium oxide thin films deposited by spray pyrolysis method. Thin Solid Films 606, 51–56 (2016). doi:10.1016/j.tsf.2016.03.035

    Article  Google Scholar 

  18. S. Kim, G. Nam, H. Park, H. Yoon, S. Lee, J.S. Kim, Effects of doping with Al, Ga, and in on structural and optical properties of ZnO nanorods grown by hydrothermal method. Bull. Korean Chem. Soc. 34, pp. 1205–1211 (2013)

    Article  Google Scholar 

  19. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd < inf> 50</inf> S < inf> 50-x</inf> Se < inf> x</inf> thin films. J. Alloys Compd. 648, 280–290 (2015). doi:10.1016/j.jallcom.2015.06.231

    Article  Google Scholar 

  20. T.S. Senthil, N. Muthukumarasamy, S. Agilan, M. Thambidurai, R. Balasundaraprabhu, Preparation and characterization of nanocrystalline TiO2 thin films. Mater. Sci. Eng. B 174, 102–104 (2010). doi:10.1016/j.mseb.2010.04.009

    Article  Google Scholar 

  21. B. Choudhury, M. Dey, A. Choudhury, Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl. Nanosci. 4, 499–506 (2014). doi:10.1007/s13204-013-0226-9

    Article  Google Scholar 

  22. K.X. Chen, Q. Dai, W. Lee, J.K. Kim, E.F. Schubert, W. Liu, S. Wu, X. Li, J.A. Smart, Parasitic sub-band-gap emission originating from compensating native defects in Si doped AlGaN. Appl. Phys. Lett. 91, 3–5 (2007). doi:10.1063/1.2786838

    Google Scholar 

  23. K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, Structural defects and photoluminescence studies of sol–gel prepared ZnO and Al-doped ZnO films. Appl. Phys. A 122, 975 (2016). doi:10.1007/s00339-016-0512-y

    Article  Google Scholar 

  24. A. Davoodi, M. Tajally, O. Mirzaee, A. Eshaghi, Fabrication and characterization of optical and electrical properties of Al-Ti Co-doped ZnO nano-structured thin film. J. Alloys Compd. 657, 296–301 (2016). doi:10.1016/j.jallcom.2015.10.107

    Article  Google Scholar 

  25. A. Yildiz, B. Kayhan, B. Yurduguzel, A.P. Rambu, F. Iacomi, S. Simon, Ni doping effect on electrical conductivity of ZnO nanocrystalline thin films. J. Mater. Sci. Mater. Electron 22, 1473–1478 (2011). doi:10.1007/s10854-011-0332-y

    Article  Google Scholar 

  26. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, The substrate temperature dependent electrical properties of titanium dioxide thin films. J. Mater. Sci. Mater. Electron 21, 692–697 (2010). doi:10.1007/s10854-009-9979-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Coordinator, DST- PURSE, Microtron centre and UGC SAP, Department of Physics, Mangalore University, for providing facilities for the characterization of thin films and technical support to carry out the work. SB acknowledges the UGC BSR for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreesha Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S., Sandeep, K.M., Kumar, P. et al. Characterization of transparent semiconducting cobalt doped titanium dioxide thin films prepared by sol–gel process. J Mater Sci: Mater Electron 29, 1098–1106 (2018). https://doi.org/10.1007/s10854-017-8011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8011-2

Navigation