Skip to main content
Log in

The substrate temperature dependent electrical properties of titanium dioxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide thin films were obtained by a dc sputtering technique onto heated glass substrates. The relationship between the substrate temperature and the electrical properties of the films was investigated. Electrical resistivity measurements showed that three types of conduction channels contribute to conduction mechanism in the temperature range of 13–320 K. The temperature dependence of electrical resistivity between 150 and 320 K indicated that electrical conduction in the films was controlled by potential barriers caused by depletion of carriers at grain boundaries. The conduction mechanism of the films was shifted from grain boundary scattering dominated band conduction to the nearest neighbor hopping conduction at temperatures between 55 and 150 K. Below 55 K, the temperature dependence of electrical resistivity shows variable range hopping conduction. The correlation between the substrate temperature and resistivity behavior is discussed by analyzing the physical plausibility of the hopping parameters and material properties derived by applying different conduction models. With these analyses, various electrical parameters of the present samples such as barrier height, donor concentration, density of states at the Fermi level, acceptor concentration and compensation ratio were determined. Their values as a function of substrate temperature were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Mardare, N. Iftimie, D. Luca, J. Non-Cryst. Solids 354, 4396 (2008)

    Article  CAS  ADS  Google Scholar 

  2. Y. Yao, G. Li, K.A. Gray, R.M. Lueptow, Langmuir 24, 7072 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Matsumoto, M. Murakami, T. Shono, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Kohsihara, H. Koinuma, Science 291, 854 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000)

    Article  CAS  ADS  Google Scholar 

  5. D. Mardare, Mater. Sci. Eng. B 95, 83 (2002)

    Article  Google Scholar 

  6. D. Mardare, P. Hones, Mater. Sci. Eng. B 68, 42 (1999)

    Article  Google Scholar 

  7. D. Mardare, G.I. Rusu, J. Opt. Adv. Mater. 6, 333 (2004)

    CAS  Google Scholar 

  8. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, J. Non-Cryst. Solids 354, 4944 (2008)

    Article  CAS  ADS  Google Scholar 

  9. A. Yildiz, S.B. Lisesivdin, M. Kasap, D. Mardare, Physica B 404, 1423 (2009)

    Article  CAS  ADS  Google Scholar 

  10. B.V. Kumar, T. Sankarappa, M.P. Kumar, S. Kumar, J. Non-Cryst. Solids 355, 229 (2009)

    Article  CAS  Google Scholar 

  11. D. Mardare, G.I. Rusu, Phys. Low-Dimens. Struct. 11/12, 69 (1999)

    Google Scholar 

  12. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  CAS  ADS  Google Scholar 

  13. J.W. Orton, M.J. Powel, Rep. Prog. Phys. 43, 1263 (1980)

    Article  ADS  Google Scholar 

  14. J.Y. Kim, H.S. Jung, J.H. No, J.R. Kim, K.S. Hong, J. Electroceram. 16, 447 (2006)

    Article  CAS  Google Scholar 

  15. A. Miller, E. Abrahamas, Phys. Rev. 120, 745 (1960)

    Article  MATH  CAS  ADS  Google Scholar 

  16. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  17. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, J. Appl. Phys. 75, 2042 (1994)

    Article  CAS  ADS  Google Scholar 

  18. B.I. Shklovskii, Sov. Phys. Semicond. 6, 1053 (1973)

    Google Scholar 

  19. N.F. Mott, E.A. Davis, Electronic Properties in Non-Crystalline Materials (Clarendon Press, Oxford, 1971)

    Google Scholar 

  20. M. Pollak, Philos. Mag. B 42, 781 (1980)

    Article  CAS  Google Scholar 

  21. S. Mahadevan, A. Giridhar, K.G. Rao, J. Phys. C 10, 4499 (1977)

    Article  CAS  ADS  Google Scholar 

  22. A.K. Hassan, N.B. Chaure, A.K. Ray, A.V. Nabok, S. Habesch, J. Phys. D 36, 1120 (2003)

    Article  CAS  ADS  Google Scholar 

  23. M. Benzaquen, D. Walsh, K. Mazuruk, Phys. Rev. B 36, 4748 (1987)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (D. Mardare) is very indebted to Professor F. Levy from Institute of Applied Physics, Polytechnic Federal School of Lausanne, Switzerland for providing the necessary laboratory facilities to carry out a part of this investigation. This work was supported by TUBITAK and ANCS under project nos TBAG-U/220 (107T584) and 17CB/06.06.2008. Abdullah Yildiz acknowledges 2218 coded national research scholarship from BİDEB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yildiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, A., Lisesivdin, S.B., Kasap, M. et al. The substrate temperature dependent electrical properties of titanium dioxide thin films. J Mater Sci: Mater Electron 21, 692–697 (2010). https://doi.org/10.1007/s10854-009-9979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9979-z

Keywords

Navigation