Skip to main content
Log in

Self-ordered nanostructures on patterned substrates

Experiment and theory of metalorganic vapor-phase epitaxy of V-groove quantum wires and pyramidal quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The formation of nanostructures during metalorganic vapor-phase epitaxy on patterned (001)/(111)B GaAs substrates is reviewed. The focus of this review is on the seminal experiments that revealed the key kinetic processes during nanostructure formation and the theory and modelling that explained the phenomenology in successively greater detail. Experiments have demonstrated that V-groove quantum wires and pyramidal quantum dots result from self-limiting concentration profiles that develop at the bottom of V-grooves and inverted pyramids, respectively. In the 1950s, long before the practical importance of patterned substrates became evident, the mechanisms of capillarity during the equilibration of non-planar surfaces were identified and characterized. This was followed, from the late 1980s, by the identification of growth rate anisotropies (i.e. differential growth rates of crystallographic facets) and precursor decomposition anisotropies, with parallel developments in the fabrication of V-groove quantum wires and pyramidal quantum dots. The modelling of these growth processes began at the scale of facets and culminated in systems of coupled reaction–diffusion equations, one for each crystallographic facet that defines the pattern, which takes account of the decomposition and surface diffusion kinetics of the group-III precursors and the subsequent surface diffusion and incorporation of the group-III atoms released by these precursors. Solutions of the equations with optimized parameters produced concentration profiles that provided a quantitative interpretation of the time-, temperature-, and alloy-concentration-dependence of the self-ordering process seen in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from [16], Copyright (1992), with permission from Elsevier

Fig. 2
Fig. 3
Fig. 4

Reprinted from [53], Copyright (2000) with permission from Elsevier

Fig. 5
Fig. 6

Reprinted figure with permission from [55], Copyright (2002) by the American Physical Society

Fig. 7

Reprinted from [60], Copyright (2000), with permission from Elsevier. (Color figure online)

Fig. 8

Reprinted with permission from [61]. Copyright (2007) American Chemical Society

Fig. 9

Reprinted figure with permission from [62]. Copyright (2011) by the American Physical Society

Fig. 10
Fig. 11
Fig. 12

Reprinted from [68], with the permission of AIP Publishing. (Color figure online)

Fig. 13

Reprinted from [70], Alessandro Surrente, Romain Carron, Pascal Gallo, Alok Rudra, Benjamin Dwir and Eli Kapon, With permission of Springer. (Color figure online)

Similar content being viewed by others

References

  1. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic Press, San Diego, CA, 1999)

    Google Scholar 

  2. K.F. Jensen, Fundamentals of chemical vapor deposition, in Chemical Vapor Deposition Principles and Applications, ed. by M.L. Hitchman, K.F. Jensen (Academic Press, London, 1993), pp. 31–90

    Google Scholar 

  3. E. Kapon, D.M. Hwang, R. Bhat, Stimulated emission in semiconductor quantum wire heterostructures. Phys. Rev. Lett. 63(4), 430–433 (1989)

    Article  Google Scholar 

  4. A. Madhukar, K.C. Rajkumar, P. Chen, In situ approach to realization of three-dimensionally confined structures via substrate encoded size reducing epitaxy on nonplanar patterned substrates. Appl. Phys. Lett. 62(13), 1547–1549 (1993)

    Article  Google Scholar 

  5. S. Koshiba, H. Noge, H. Akiyama, T. Inoshita, Y. Nakamura, A. Shimizu, Y. Nagamune, M. Tsuchiya, H. Kano, H. Sakaki, K. Wada, Formation of GaAs ridge quantum wire structures by molecular beam epitaxy on patterned substrates. Appl. Phys. Lett. 64(3), 363–365 (1994)

    Article  Google Scholar 

  6. R. Nötzel, Z. Niu, M. Ramsteiner, H.-P. Schonherr, A. Tranpert, L. Daweritz, K.H. Ploog, Uniform quantum-dot arrays formed by natural self-faceting on patterned substrates. Nature 392(6671), 56–59 (1998)

    Article  Google Scholar 

  7. E. Kapon (ed.), Semiconductor Lasers I: Fundamentals (Academic Press, San Diego, CA, 1999)

    Google Scholar 

  8. M. Ozdemir, A. Zangwill, Theory of epitaxial growth onto nonplanar substrates. J. Vac. Sci. Technol. A 10(4), 684–690 (1992)

    Article  Google Scholar 

  9. T. Sato, I. Tamai, H. Hasegawa, Growth kinetics and modeling of selective molecular beam epitaxial growth of GaAs ridge quantum wires on pre-patterned nonplanar substrates. J. Vac. Sci. Technol. B 22(4), 2266–2274 (2004)

    Article  Google Scholar 

  10. T. Fukui, S. Ando, Y. Tokura, T. Toriyama, GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition. Appl. Phys. Lett. 58(20), 2018–2020 (1991)

    Article  Google Scholar 

  11. K. Kumakura, K. Nakakoshi, J. Motohisa, T. Fukui, H. Hasegawa, Novel formation method of quantum dot structures by self-limited selective area metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 34(8B), 4387–4389 (1995)

    Article  Google Scholar 

  12. J.A. Lebens, C.S. Tsai, K.J. Vahala, T.F. Kuech, Application of selective epitaxy to fabrication of nanometer scale wire and dot structures. Appl. Phys. Lett. 56(26), 2642–2644 (1990)

    Article  Google Scholar 

  13. M. Araki, Y. Hanada, H. Fujikura, H. Hasegawa, Fabrication of InGaAs quantum wires and dots by selective molecular beam epitaxial growth on various mesa-patterned (001)InP substrates. Jpn. J. Appl. Phys. 36, 1763–1769 (1997)

    Article  Google Scholar 

  14. Y. Sugiyama, Y. Sakuma, S. Muto, N. Yokoyama, Novel InGaAs/GaAs quantum dot structures formed in tetrahedral?shaped recesses on (111)B GaAs substrate using metalorganic vapor phase epitaxy. Appl. Phys. Lett. 67(2), 256–258 (1995)

    Article  Google Scholar 

  15. T. Tsujikawa, W. Pan, K. Momma, M. Kudo, K. Tanaka, H. Yaguchi, K. Onabe, Y. Shiraki, R. Ito, Metalorganic vapor phase epitaxy growth features of AlGaAs in tetrahedral-shaped recesses on GaAs (111)B substrates. Jpn. J. Appl. Phys. 36(6B), 4102–4106 (1997)

    Article  Google Scholar 

  16. E. Kapon, D.M. Hwang, M. Walther, R. Bhat, N.G. Stoffel, Two-dimensional quantum confinement in multiple quantum wire lasers grown by OMCVD on V-grooved substrates. Surf. Sci. 267(1), 593–600 (1992)

    Article  Google Scholar 

  17. F. Vouilloz, D.Y. Oberli, M.-A. Dupertuis, A. Gustafsson, F. Reinhardt, E. Kapon, Polarization anisotropy and valence band mixing in semiconductor quantum wires. Phys. Rev. Lett. 78(8), 1580–1583 (1997)

    Article  Google Scholar 

  18. A. Feltrin, F. Michelini, J.L. Staehli, B. Deveaud, V. Savona, J. Toquant, X.L. Wang, M. Ogura, Localization-dependent photoluminescence spectrum of biexcitons in semiconductor quantum wires. Phys. Rev. Lett. 95(17), 177404 (2005)

    Article  Google Scholar 

  19. E. Levy, A. Tsukernik, M. Karpovski, A. Palevski, B. Dwir, E. Pelucchi, A. Rudra, E. Kapon, Y. Oreg, Luttinger-liquid behavior in weakly disordered quantum wires. Phys. Rev. Lett. 97(19), 196802 (2006)

    Article  Google Scholar 

  20. M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004)

    Article  Google Scholar 

  21. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D: Appl. Phys. 39, R387–R406 (2006)

    Article  Google Scholar 

  22. A. Hartmann, L. Loubies, F. Reinhardt, E. Kapon, Self-limiting growth of quantum dot heterostructures on nonplanar 111B substrates. Appl. Phys. Lett. 71(10), 1314–1316 (1997)

    Article  Google Scholar 

  23. A. Hartmann, Y. Ducommun, L. Loubies, K. Leifer, E. Kapon, Structure and photoluminescence of single AlGaAs/GaAs quantum dots grown in inverted tetrahedral pyramids. Appl. Phys. Lett. 73(16), 2322–2324 (1998)

    Article  Google Scholar 

  24. A. Hartmann, Y. Ducommun, E. Kapon, U. Hohenester, E. Molinari, Few-particle effects in semiconductor quantum dots: observation of multicharged excitons. Phys. Rev. Lett. 84(24), 5648–5651 (2000)

    Article  Google Scholar 

  25. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290(5500), 2282–2285 (2000)

    Article  Google Scholar 

  26. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86(8), 1502–1505 (2001)

    Article  Google Scholar 

  27. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96(13), 130501 (2006)

    Article  Google Scholar 

  28. R.J. Young, R.M. Stevenson, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8(2), 29–29 (2006)

    Article  Google Scholar 

  29. M.H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, I. Abram, Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett. 84(5), 648–650 (2004)

    Article  Google Scholar 

  30. G. Juska, V. Dimastrodonato, L.O. Mereni, A. Gocalinska, E. Pelucchi, Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7(7), 527–531 (2013)

    Article  Google Scholar 

  31. G. Juska, E. Murray, V. Dimastrodonato, T.H. Chung, S.T. Moroni, A. Gocalinska, E. Pelucchi, Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots. J. Appl. Phys. 117(13), 134302 (2015)

    Article  Google Scholar 

  32. J.H. Neave, P.J. Dobson, B.A. Joyce, J. Zhang, Reflection high-energy electron diffraction oscillations from vicinal surfaces: a new approach to surface diffusion measurements. Appl. Phys. Lett. 47(2), 100–192 (1985)

    Article  Google Scholar 

  33. B. Voigtländer, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth. Surf. Sci. Rep. 43(5178), 127–254 (2001)

    Article  Google Scholar 

  34. P.H. Fuoss, D.W. Kisker, G.B. Stephenson, S. Brennan, In-situ X-ray studies of organometallic vapor phase epitaxy growth. Mat. Sci. Eng. B 30(2–3), 99–108 (1995)

    Article  Google Scholar 

  35. D.E. Aspnes, N. Dietz, Optical approaches for controlling epitaxial growth. Appl. Surf. Sci. 130–132, 367–376 (1998)

    Article  Google Scholar 

  36. S. Tiwari, G.D. Pettit, K.R. Milkove, F. Legoues, R.J. Davis, J.M. Woodall, High efficiency and low threshold current strained V?groove quantum?wire lasers. Appl. Phys. Lett. 64(26), 3536–3538 (1994)

    Article  Google Scholar 

  37. C. Herring, Surface tension as a motivation for sintering, in The Physics of Powder Metallurgy, ed. by W.E. Kingston (McGraw-Hill, New York, 1951), pp. 143–179

    Google Scholar 

  38. Y.E. Geguzin, N.N. Ovcharenko, Surface energy and surfaces in solids. Sov. Phys. Usp. 5(1), 129–157 (1962) [Usp. Fiz. Nauk. 76, 283–328 (1962)]

  39. W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957)

    Article  Google Scholar 

  40. W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30(1), 77–83 (1959)

    Article  Google Scholar 

  41. W.W. Mullins, Capillarity-induced surface morphologies. Interface Sci. 9(1/2), 9–20 (2001)

    Article  Google Scholar 

  42. H.P. Bonzel, E. Preuss, The dynamical behavior of periodic surface profiles on metals under the influence of anisotropic surface energy. Appl. Phys. A 35(1), 1–8 (1984)

    Article  Google Scholar 

  43. H. Spohn, Surface dynamics below the roughening transition. J. Phys. I 3(1), 69–81 (1993)

    Google Scholar 

  44. S.D. Hersee, E. Barbier, R. Blondeau, R. Blondeau, A study of the orientation dependence of Ga(Al)As growth by MOVPE. J. Crystal Growth 77(1), 310–320 (1986)

    Article  Google Scholar 

  45. R. Bhat, E. Kapon, D.M. Hwang, M.A. Koza, C.P. Yun, Patterned quantum well heterostructures grown by OMCVD on non-planar substrates: applications to extremely narrow SQW lasers. J. Crystal Growth 93(1–4), 850–856 (1988)

    Article  Google Scholar 

  46. X.-L. Wang, V. Voliotis, Epitaxial growth and optical properties of semiconductor quantum wires. J. Appl. Phys. 99(12), 121301 (2006)

    Article  Google Scholar 

  47. A. Madhukar, Far from equilibrium vapour phase growth of lattice matched III-V compound semiconductor interfaces: some basic concepts and Monte-Carlo computer simulations. Surf. Sci. 132(1), 344–374 (1983)

    Article  Google Scholar 

  48. G.B. Stringfellow, A critical appraisal of growth mechanisms in MOVPE. J. Crystal Growth 68(1), 111–122 (1984)

    Article  Google Scholar 

  49. S. Guha, A. Madhukar, K. Kaviani, L. Chen, R. Kuchibhotla, R. Kapre, M. Hyugachi, Z. Xie, Molecular Beam Epitaxical Growth of Al\(_x\)Ga\(_{1-x}\)As on non- Planar Patterned GaAs (100), in III-V Heterostructures For Electronic/Photonic Devices, ed. by C.W. Tu, V.O. Mattera, A.C. Gossard (Materials Research Society, Pittsburgh, 1989), pp. 27–32

    Google Scholar 

  50. M. Hata, T. Isu, A. Watanabe, Y. Katayama, Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high-energy electron diffraction. J. Vac. Sci. Technol. B 8(4), 692–696 (1990)

    Article  Google Scholar 

  51. D.G. Coronell, K.F. Jensen, Analysis of MOCVD of GaAs on patterned substrates. J. Crystal Growth 114(4), 581–592 (1991)

    Article  Google Scholar 

  52. S.H. Jones, L.K. Seidel, K.M. Lau, M. Harold, Patterned substrate epitaxy surface shapes. J. Crystal Growth 108(1), 73–88 (1991)

    Article  Google Scholar 

  53. F. Grosse, R. Zimmermann, Monte Carlo growth simulation for Al\(_x\)Ga\(_{1-x}\) As heteroepitaxy. J. Crystal Growth 212(1), 128–137 (2000)

    Article  Google Scholar 

  54. G. Biasiol, E. Kapon, Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces. Phys. Rev. Lett. 81(14), 2962–2965 (1998)

    Article  Google Scholar 

  55. G. Biasiol, A. Gustafsson, K. Leifer, E. Kapon, Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 65(20), 205306 (2002)

    Article  Google Scholar 

  56. A. Gustafsson, F. Reinhardt, G. Biasiol, E. Kapon, Low-pressure organometallic chemical vapor deposition of quantum wires on V-grooved substrates. Appl. Phys. Lett. 67(25), 3673–3675 (1995)

    Article  Google Scholar 

  57. G. Biasiol, F. Reinhardt, A. Gustafsson, E. Martinet, E. Kapon, Structure and formation mechanisms of AlGaAs V-groove vertical quantum wells grown by low pressure organometallic chemical vapor deposition. Appl. Phys. Lett. 69(18), 2710–2712 (1996)

    Article  Google Scholar 

  58. M.B. Panish, M. Ilegems, Phase equilibria in ternary III-V systems. Prog. Solid State Ch. 7, 39–83 (1972)

    Article  Google Scholar 

  59. J.Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, London, 1992)

    Google Scholar 

  60. A. Kaluzaa, A. Schwarza, D. Gauera, H. Hardtdegena, N. Nastasea, H. Ltha, Th SchŁpersa, D. Meertensb, A. Macielc, J. Ryanc, E. OSullivanc, On the choice of precursors for the MOVPE-growth of high-quality Al\(_{0.30}\)Ga\(_{0.70}\)As/GaAs v-groove quantum wires with large subband spacing. J. Cryst. Growth 221(1—-4), 91–97 (2000)

    Article  Google Scholar 

  61. E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios, E. Kapon, Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates. Nano Lett. 7(5), 1282–1285 (2007)

    Article  Google Scholar 

  62. E. Pelucchi, V. Dimastrodonato, A. Rudra, K. Leifer, E. Kapon, L. Bethke, P.A. Zestanakis, D.D. Vvedensky, Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Phys. Rev. B 83(20), 205409 (2011)

    Article  Google Scholar 

  63. M. Ohtsuka, S. Miyazawa, Model for molecular-beam-epitaxy growth over nonplanar surfaces. J. Appl. Phys. 64(7), 3522–3527 (1988)

    Article  Google Scholar 

  64. M. Ohtsuka, A numerical simulation model for molecular-beam epitaxial (MBE) growth on nonplanar surfaces. J. Crystal Growth 205(1–2), 112–122 (1999)

    Article  Google Scholar 

  65. W.K. Burton, N. Cabrera, F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. London A 243(866), 299–358 (1951)

    Article  Google Scholar 

  66. V. Dimastrodonato, E. Pelucchi, D.D. Vvedensky, Self-limiting evolution of seeded quantum wires and dots on patterned substrates. Phys. Rev. Lett. 108(25), 256102 (2012)

    Article  Google Scholar 

  67. V. Dimastrodonato, E. Pelucchi, P.A. Zestanakis, D.D. Vvedensky, Morphological, compositional, and geometrical transients of V-groove quantum wires formed during metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 103(4), 042103 (2013)

    Article  Google Scholar 

  68. S.T. Moroni, V. Dimastrodonato, T.-H. Chung, G. Juska, A. Gocalinska, D.D. Vvedensky, E. Pelucchi, Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates. J. Appl. Phys. 117(16), 164313 (2015)

    Article  Google Scholar 

  69. F. Lelarge, C. Constantin, K. Leifer, A. Condo, V. Iakovlev, E. Martinet, A. Rudra, E. Kapon, Effect of indium segregation on optical properties of V-groove InGaAs/GaAs strained quantum wires. Appl. Phys. Lett. 75(21), 3300–3302 (1999)

    Article  Google Scholar 

  70. A. Surrente, R. Carron, P. Gallo, A. Rudra, B. Dwir, E. Kapon, Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates. Nano Res. 9(11), 3279–3290 (2016)

    Article  Google Scholar 

  71. N. Haider, M.R. Wilby, D.D. Vvedensky, Epitaxial growth kinetics on patterned substrates. Appl. Phys. Lett. 62(24), 3108–3110 (1993)

    Article  Google Scholar 

  72. S. Koshiba, T. Noda, H. Noge, Y. Nakamura, H. Ichinose, T. Shitara, D.D. Vvedensky, H. Sakaki, Control of ridge shape for the formation of nanometer-scale GaAs ridge quantum wires by molecular beam epitaxy. J. Crystal Growth 150(1), 322–326 (1995)

    Article  Google Scholar 

  73. F. Lelarge, G. Biasiol, A. Rudra, A. Condo, E. Kapon, Self-ordered nanostructures grown by organometallic chemical vapor deposition on V-grooved substrates: experiments and Monte-Carlo simulations. Microelectron. J. 30(4–5), 461–466 (1999)

    Article  Google Scholar 

  74. M. Esen, M. Ozdemir, KMC simulation of growth and equilibration of V-shaped patterned crystal surface via step motion. J. Crystal Growth 386, 22–26 (2014)

    Article  Google Scholar 

  75. N. Haider, S.A. Khaddaj, M.R. Wilby, D.D. Vvedensky, Parallel Monte Carlo simulations of epitaxial growth. Comput. Phys. 9(1), 85–96 (1995)

    Article  Google Scholar 

  76. T.P. Schulzea, P.W.E. Smereka, Coupling kinetic Monte-Carlo and continuum models with application to epitaxial growth. J. Comp. Phys. 189(1), 197–211 (2003)

    Article  Google Scholar 

  77. T.H. Chung, G. Juska, S.T. Moroni, A. Pescaglini, A. Gocalinska, E. Pelucchi, Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat. Photon. 10(12), 782–787 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was enabled by Science Foundation Ireland under Grants SFI/05/IN.1/I25, 10/IN.1/I3000, 15/IA/2864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano T. Moroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelucchi, E., Moroni, S.T., Dimastrodonato, V. et al. Self-ordered nanostructures on patterned substrates. J Mater Sci: Mater Electron 29, 952–967 (2018). https://doi.org/10.1007/s10854-017-7993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7993-0

Navigation