Skip to main content
Log in

Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ZnO, Zn0.96Mn0.04O, Zn0.95Mn0.04Co0.01O, Zn0.94Mn0.04Co0.02O and Zn0.92Mn0.04Co0.04O nanoparticles were synthesized by simple chemical precipitation technique. The effects of co-doping on the structure and magnetic properties of these nanoparticles were studied. The X-rays diffraction (XRD) scans were performed in the 2θ range of 20°–80°. The XRD patterns, at 300 K, of all the pure and co-doped ZnO samples confirmed the formation of wurtzite-type structure. X-ray diffraction and transmission scanning electron microscope analysis indicated that the high spin Co2+ and Mn2+ ions were substituted for the Zn2+ ions at tetrahedral sites. The average size of the nanoparticles were increased from 17 to 24 nm with the increase of dopants concentration. Moreover, Energy Dispersive X-ray spectroscopy (EDX) confirmed the synthesis results. All Zn0.96−xMn0.04Co x O (x = 0.0, 0.1, 0.2 and 0.4) nanoparticles samples were observed to be paramagnetic below 300 K. However, a large increase in the magnetization was observed below 40 K. This behavior, along with the negative value of the Curie–Weiss constant obtained from the linear fit to the susceptibility data below room temperature, indicated the ferromagnetic nature of the samples. The origin of ferromagnetism is likely to be the intrinsic characteristics of the Co and Mn doped samples. The high magnetization was noted for the 1 wt% Co co-doped Mn–ZnO annealed samples as compared to other samples with Co concentration above and below this threshold concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.A. Prinz, Magneto electronics. Science 282, 1660–1663 (1998)

    Article  Google Scholar 

  2. W. Prellier, A. Fouchet, B. Mercey, Oxide-diluted magnetic semiconductors: a review of the experimental status. J. Phys. 15, R1583 (2003)

    Google Scholar 

  3. A. Stroppa, X. Duan, M. Peressi, Structural and magnetic properties of Mn-doped GaAs(1 1 0) surface. Mater. Sci. Eng. B 25, 217–221 (2006)

    Article  Google Scholar 

  4. Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn1– xMnxO nanowires via vapor phase growth. Appl. Phys. Lett. 83, 4020–4022 (2003)

    Article  Google Scholar 

  5. Y. Ohno, D.K. Young, B. Beshoten, F. Matsukura, H. Ohno, D.I. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790 (1999)

    Article  Google Scholar 

  6. Q. Wang, Q. Sun, P. Jena, Ab initio study of electronic and magnetic properties of the C-codoped Ga1–xMnxN (1010) surface. Phys. Rev. B 75, 035322 (2007)

    Article  Google Scholar 

  7. C. Klingshirn, Optical properties of bound and localized excitons and of defect states. Phys. Status Solidi B 71, 547–556 (1975)

    Article  Google Scholar 

  8. X.Y. Xu, C.B. Cao, Structure and ferromagnetic properties of Co-doped ZnO powders. J. Magn. Magn. Mater. 321, 2216–2219 (2009)

    Article  Google Scholar 

  9. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965974 (2010)

    Article  Google Scholar 

  10. K. Sato, H.K. Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555 (2000)

    Article  Google Scholar 

  11. Y. Lin, D. Jiang, F. Lin, W. Shi, M. Xueming, Fe-doped ZnO magnetic semiconductor by mechanical alloying. J. Alloys Compd. 436, 30–33 (2007)

    Article  Google Scholar 

  12. P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, H.C. Verma, Effect of iron doping concentration on magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 321, 2587–2591 (2009)

    Article  Google Scholar 

  13. S.Y. Bae, C.W. Na, J.H. Kang, J. Park, Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B 109, 2526–2531 (2005)

    Article  Google Scholar 

  14. J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Aberration-corrected transmission electron microscopy for advanced materials characterization. Chem. Phys. Lett. 372, 717–722 (2003)

    Article  Google Scholar 

  15. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, M. Svon, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  16. A. Angew, Origin, development, and future of spintronics (Nobel Lecture). Chem. Int. Ed. 47, 5956–5967 (2008)

    Article  Google Scholar 

  17. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in Zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  18. G.Y. Ahn, S.I. Park, C.S. Kim, Enhanced ferromagnetic properties of diluted Fe doped ZnO with hydrogen treatment. J. Magn.Magn. Mater. 303, 329–331 (2006)

    Article  Google Scholar 

  19. S.S. Abdullahia, Y. Köseoğlu, S. Güner, S. Kazan, B. Kocaman, C.E. Ndikilar, Synthesis and characterization of Mn and Co codoped ZnO nanoparticles. Superlattices Microstruct. 83, 342–352 (2015)

    Article  Google Scholar 

  20. R. Khan, S. Fashu, Z.U. Rehman, Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles. J. Mater. Sci. 28, 4333–4339 (2017)

    Google Scholar 

  21. Y.M. Hao, S.Y. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7, 100 (2012)

    Article  Google Scholar 

  22. C.K. Ghosh, S. Malkhandi, M.K. Mitra, K.K. Chattopadhyay, Effect of Mn doping on the electric and dielectric properties of ZnO epitaxial films. J. Phys. D Appl. Phys. 41, 245113 (2008)

    Article  Google Scholar 

  23. K. Lommens, K. Lambert, F. Loncke, D. De Muynck, T. Balkan, F. Vanhaecke, H. Vrielinck, F. Callens, Z. Hens, The growth of Co:ZnO/ZnO core/shell colloidal quantum dots: changes in nanocrystal size, concentration and dopant coordination. ChemPhysChem 9(3), 484–491 (2008)

    Article  Google Scholar 

  24. J.J. Beltran, J.A. Osorio, C.A. Barrero, C.B. Hanna, A. Punnoose, Magnetic properties of Fe doped, Co doped, and Fe+ Co co-doped ZnO. J. Appl. Phys. 113, 17C308 (2013)

    Article  Google Scholar 

  25. G. Lawes, A.S. Risbud, A.P. Ramirez, R. Seshadri, Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys. Rev. B 71, 045201 (2005)

    Article  Google Scholar 

  26. Y. Jiang, W. Yan, Z. Sun, Q. Liu, Z. Pan, T. Yao, Y. Li, Z. Qi, G. Zhang, P. Xu, Z. Wu, S. Wei, Experimental and theoretical investigations on ferromagnetic nature of Mn-doped dilute magnetic semiconductors. J. Phys. Conf. Ser. 190, 012100 (2009)

    Article  Google Scholar 

  27. L. Yang, X. Wu, G. Huang, T. Qiu, Y. Yang, In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. J. Appl. Phys. 97, 014308 (2005)

    Article  Google Scholar 

  28. R. Khan, M.U. Zulfiqar, S. Fashu, M.U. Rahman, Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO2 nanoparticles. J. Mater. Sci. 28(3), 2673–2679 (2017). doi:10.1007/s10854-016-5844-z

    Google Scholar 

  29. R. Khan, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J. Mater. Sci. 27, 4003–4010 (2016). doi:10.1007/s10854-015-4254-y

    Google Scholar 

  30. R. Khan, S. Fashu, M.U. Rahman, Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci. 27(8), 7725–7730 (2016)

    Google Scholar 

  31. R. Khan, S. Fashu, Z.U. Rehman, Zulfiqar, M.U. Rahman, Effect of annealing on Ni-doped ZnO nanoparticles synthesized by the co-precipitation method. J. Mater. Sci. 28(14), 10122–10130 (2017)

    Google Scholar 

  32. C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology 17, 1520 (2006)

    Article  Google Scholar 

  33. R. Elilarassi, G. Chandrasekaran, Synthesis and characterization of ball milled Fe-doped ZnO diluted magnetic semiconductor. Optoelectron. Lett. 8, 109–112 (2012)

    Article  Google Scholar 

  34. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Direct kinetic correlation of carriers and ferromagnetism in Co2+:ZnO. Phys. Rev. Lett. 97, 037203–037204 (2006)

    Article  Google Scholar 

  35. S. Yin, Absence of ferromagnetism in bulk polycrystalline Zn0.9Co0.1O. Phys. Rev. B 73, 224408-1–224408-5 (2006)

    Google Scholar 

  36. T. Fukumura, Z. Jin, M. Kawasaki, Magnetic properties of Mn doped ZnO. Appl. Phys. Lett. 78, 958–960 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Higher Education Commission (HEC) of Pakistan under START-UP RESEARCH GRANT PROGRAM with a Grant No. : 21-1525/SRGP/R&D/HEC/2017 and the Fundamental Research Funds for the HEC Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajwali Khan or Muneeb Ur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, Fashu, S. et al. Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles. J Mater Sci: Mater Electron 29, 32–37 (2018). https://doi.org/10.1007/s10854-017-7884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7884-4

Navigation