Skip to main content

Advertisement

Log in

A novel tunable color emitting phosphor Sr3YLi(PO4)3F:Eu2+, Mn2+ for near-UV white LEDs based on the energy transfer from Eu2+ to Mn2+

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel Eu2+ and Mn2+ doped fluorapatite-type Sr3YLi(PO4)3F powder materials have been synthesized via high temperature solid state reaction. The samples are characterized by X-ray diffraction (XRD), scanning electric microscopy (SEM), photoluminescence (PL) and photoluminescence excitation (PLE) spectra. Eu2+ single doped Sr3YLi(PO4)3F host displays a blue emission ranging from 400 to 550 nm centered at 439 nm, and exhibits a broad excitation band varying from 225 to 425 nm which matches with commercial n-UV LEDs (360–410 nm). Under near-UV light irradiation in the range from 270 to 410 nm, Eu2+ and Mn2+ co-doped Sr3YLi(PO4)3F phosphors show two emission bands centered at 439 and 565 nm, respectively. The relative intensity ratio of Eu2+ and Mn2+ can be changed by increasing the amount of Mn2+ ions, the emission color can be regulated from blue to white. The energy transfer process from Eu2+ to Mn2+ has been proved to the resonant type through the quadrupole–quadrupole interaction mechanism. It is important that the white light emission can be gained by modulating the relative contents of Eu2+ and Mn2+ ions in Sr3YLi(PO4)3F host. Base on the obtained results, the as-prepared phosphors might be applied as a candidate for white LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Höppe, Angew. Chem. Int. Ed 48, 3572 (2009)

    Google Scholar 

  2. T. Suehiro, N. Hirosaki, R.-J. Xie, ACS Appl. Mater. Interfaces 3, 811 (2011)

    CAS  Google Scholar 

  3. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Nat. Photonics 3, 180 (2009)

    CAS  Google Scholar 

  4. C.C. Lin, R.-S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011)

    CAS  Google Scholar 

  5. S. Tonzani, Nature 459, 312 (2009)

    CAS  Google Scholar 

  6. V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 316 (2009)

    CAS  Google Scholar 

  7. H.S. Jang, Y.H. Won, D.Y. Jeon, Appl. Phys. B 95, 715 (2009)

    CAS  Google Scholar 

  8. A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R.G. Chandran, M.V. Shankar, Chem. Mater. 18, 3314 (2006)

    CAS  Google Scholar 

  9. Y.C. Chiu, W.R. Liu, C.K. Chang, C.C. Liao, Y.T. Yeh, S.M. Jang, T.M. Chen, J. Mater. Chem. 20, 1755 (2010)

    CAS  Google Scholar 

  10. Y. Zhang, G.G. Li, D.L. Geng, M.M. Shang, C. Peng, J. Lin, Inorg. Chem. 51, 11655 (2012)

    CAS  Google Scholar 

  11. C. Lorbeer, A.-V. Mudring, J. Phys. Chem. C 117, 12229 (2003)

    Google Scholar 

  12. M. Mickens, Z. Assefa, D.J. Kumar, J. Sol-Gel Sci. Technol. 63, 153 (2012)

    CAS  Google Scholar 

  13. Z.G. Xia, J.Q. Zhuang, H.K. Liu, L.B. Liao, J. Phys. D 45, 015302 (2012)

    Google Scholar 

  14. W.Z. Lv, Y.C. Jia, Q. Zhao, W. Lü, M.M. Jiao, B.Q. Shao, H.P. You, J. Phys. Chem. C 118, 4649 (2014)

    CAS  Google Scholar 

  15. W.J. Tang, Z. Zhang, Y.D. Ma, D. Qin, Ceram. Int. 43, 9117 (2017)

    CAS  Google Scholar 

  16. C.-H. Huang, T.-M. Chen, W.-R. Liu, Y.-C. Chiu, Y.-T. Yeh, S.-M. Jang, ACS Appl. Mater. Interfaces 2, 259 (2010)

    CAS  Google Scholar 

  17. P.P. Dai, S.-P. Lee, T.-S. Chan, C.-H. Huang, Y.-W. Chiang, T.-M. Chen, J. Mater. Chem. C 4, 1170 (2016)

    CAS  Google Scholar 

  18. B. Dawson, M. Ferguson, G. Marking, A.L. Diaz, Chem. Mater. 16, 5311 (2004)

    CAS  Google Scholar 

  19. C.X. Li, J. Dai, J. Huang, D.G. Deng, H. Yu, L. Wang, Y.T. Ma, Y.J. Hua, S.Q. Xu, Ceram. Int. 42, 6891 (2016)

    CAS  Google Scholar 

  20. J.Y. Chen, N.M. Zhang, C.F. Guo, F.J. Pan, X.J. Zhou, H. Suo, X.Q. Zhao, EwaM. Goldys, J. Mater. Chem. C 4, 2367 (2016)

    CAS  Google Scholar 

  21. C.-H. Huang, W.-R. Liu, T.-M. Chen, J. Phys. Chem. C 114, 18698 (2010)

    CAS  Google Scholar 

  22. W.J. Yang, L. Luo, T.M. Chen, N.S. Wang, Chem. Mater. 17, 3883 (2005)

    CAS  Google Scholar 

  23. N. Guo, Y.H. Zheng, Y.C. Jia, H. Qiao, H.P. You, J. Phys. Chem. C 116, 1329 (2012)

    CAS  Google Scholar 

  24. J.Y. Yu, Z.D. Hao, X. Zhang, Y.S. Luo, J.H. Zhang, Chem. Commun. 47, 12376 (2011)

    CAS  Google Scholar 

  25. W.Z. Lv, M.M. Jiao, Q. Zhao, B.Q. Shao, W. Lü, H.P. You, Inorg. Chem. 53, 11007 (2014)

    CAS  Google Scholar 

  26. S.S. Hu, W.J. Tang, J. Lumin. 145, 100 (2014)

    CAS  Google Scholar 

  27. R.D. Shannon, Acta Crystallogr. A A32, 751 (1976)

    CAS  Google Scholar 

  28. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    CAS  Google Scholar 

  29. L.G. Van Uitert, J. Lumin. 4, 1 (1971)

    Google Scholar 

  30. N. Guo, Y. Huang, H. You, M. Yang, Y. Song, K. Liu, Y. Zheng, Inorg. Chem. 49, 10907 (2010)

    CAS  Google Scholar 

  31. T.-S. Chan, R.-S. Liu, I. Baginskiy, Chem. Mater. 20, 1215 (2008)

    CAS  Google Scholar 

  32. Z.W. Zhang, H. Zhong, S.S. Yang, X.J. Chu, J. Alloy. Compd 708, 671 (2017)

    CAS  Google Scholar 

  33. P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, M.K.R. Warrier, J. Phys. Chem. Solids 64, 841 (2003)

    CAS  Google Scholar 

  34. G. Blasse, Phys. Lett. A 28, 444 (1968)

    CAS  Google Scholar 

  35. Y.M. Feng, J.P. Huang, L.L. Liu, J. Liu, X.B. Yu, Dalton Trans 44, 15006 (2015)

    CAS  Google Scholar 

  36. M.P. Miller, J.C. Wright, J. Chem. Phys. 71, 324 (1979)

    CAS  Google Scholar 

  37. R. Reisfeld, N.L. Soffer, J. Solid State Chem. 28, 391 (1979)

    CAS  Google Scholar 

  38. Y.H. Jin, Y.H. Hu, Y.R. Fu, L. Chen, G.F. Ju, Z.F. Mu, J. Mater. Chem. C 3, 9435 (2015)

    CAS  Google Scholar 

  39. X.G. Zhang, P. He, L.Y. Zhou, Q. Pang, J.X. Shi, M.L. Gong, J. Lumin. 157, 352 (2015)

    CAS  Google Scholar 

  40. Y. Chen, Y. Li, J. Wang, M.M. Wu, C.X. Wang, J. Phys. Chem. C 118, 12494 (2014)

    CAS  Google Scholar 

  41. Y.M. Wang, H.B. Zhang, Q.L. Wei, C.H. Su, D. Zhang, Ceram. Int. 42, 12422 (2016)

    CAS  Google Scholar 

  42. S. Bhushan, M. Chukichev, J. Mater. Sci. Lett. 7, 319 (1988)

    CAS  Google Scholar 

  43. X.J. Zhang, J. Wang, L. Huang, F.J. Pan, Y. Chen, B.F. Lei, M.Y. Peng, M.M. Wu, ACS Appl. Mater. Interfaces 7, 10044 (2015)

    CAS  Google Scholar 

  44. X.J. Zhang, L. Huang, F.J. Pan, M.M. Wu, J. Wang, Y. Chen, Q. Su, ACS Appl. Mater. Interfaces 6, 2709 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 21671045), and the Special Funds for University Discipline and Specialty Construction of Guangdong Province, China (No. 2016KQNCX041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahong Jin or Yihua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Jin, Y., Wang, C. et al. A novel tunable color emitting phosphor Sr3YLi(PO4)3F:Eu2+, Mn2+ for near-UV white LEDs based on the energy transfer from Eu2+ to Mn2+ . J Mater Sci: Mater Electron 28, 19139–19147 (2017). https://doi.org/10.1007/s10854-017-7870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7870-x

Navigation