Skip to main content
Log in

Photocatalytic effect of (TiO2/CeO2) with support of β-cyclodextrin for enhanced performance under solar light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we have reported the interaction of binary metal oxides (TiO2/CeO2) with β-CD towards enhancement in the photocatalytic performance under solar light irradiation. The interactions of (TiO2/CeO2) with β-CD characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Vis diffuse reflectance spectroscopy (DRS). XRD analysis shows that the fluorite structure of CeO2 and anatase structure of TiO2 have not been changed after the addition of β-CD. The structure morphology of (TiO2/CeO2), not changed by the addition of β-CD, is also confirmed by SEM analysis. Addition of CeO2 and β-CD with TiO2 is found to be significantly extended the absorption edge towards the visible region which is confirmed by UV-DRS spectral data. The photocatalytic activity of the modified (TiO2/CeO2)-β-CD system was evaluated by decolorization of Rhodamine B (RhB) dye taken as a model pollutant under solar light irradiation. The formation of an inclusion complex of RhB with β-CD is confirmed by UV–Vis analysis. Various experimental parameters like (TiO2:CeO2) ratio, initial concentration of RhB dye, dose of the catalyst, irradiation time and pH have been investigated. Kinetic results show that decolorization reaction follows pseudo-first-order kinetics. The mineralization of RhB dye was also confirmed by COD measurements. The modified (TiO2/CeO2)-β-CD system exhibits higher photocatalytic activity than (TiO2/CeO2), TiO2 and CeO2. A suitable reaction mechanism for the effective decolorization of RhB dye by (TiO2/CeO2)-β-CD system has also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Bethi, S.H. Sonawane, G.S. Rohit, C.R. Holkar, D.V. Pinjari, B.A. Bhanvase, A.B. Pandit, Ultrason. Sonochem. 28, 150–160 (2016)

    CAS  Google Scholar 

  2. P. Niu, J. Hao, Colloids Surf A 431, 127–132 (2013)

    CAS  Google Scholar 

  3. H.B. Hadjltaief, M.B. Zina, M.E. Galvez, P.D. Costa, J. Photochem. Photobiol. A 315, 25–33 (2016)

    Google Scholar 

  4. S. Thangavel, G. Venugopal, S.-J. Kim, Mater. Chem. Phys. 145, 108–115 (2014)

    CAS  Google Scholar 

  5. Y. Hu, D. Li, H. Wang, G. Zeng, X. Li, Y. Shao, J. Mol. Catal. A 408, 172–178 (2015)

    CAS  Google Scholar 

  6. C. Chavez-Moreno, L. Ferrer, L. Hinojosa-Reyes, A. Hernandez-Ramirez, V. Cerda, J. Guzman-Mar, J. Environ. Manage 129, 377–383 (2013)

    CAS  Google Scholar 

  7. B. Subash, B. Krishna Kumar, R. Velmurugan, S. Balachandran, M. Swaminathan, Mater. Sci. Semicond. Process 16, 859–867 (2013)

    CAS  Google Scholar 

  8. D.-N. Liu, G.-H. He, L. Zhu, W.-Y. Zhou, Y.-H. Xu, Appl. Surf. Sci. 258, 8055–8060 (2012)

    CAS  Google Scholar 

  9. S. Luo, T.-D. Nguyen-Phan, A.C. Johnston-Peck, L. Barrio, S. Sallis, D.A. Arena, S. Kundu, W. Xu, L.F.J. Piper, E.A. Stach, D.E. Polyansky, E. Fujita, J.A. Rodriguez, S.D. Senanayake, J. Phys. Chem. C 119, 2669–2679 (2015)

    CAS  Google Scholar 

  10. C. Hao, J. Li, Z. Zhang, Y. Ji, H. Zhan, F. Xiao, D. Wang, B. Liu, F. Su, Appl. Surf. Sci 331, 17–26 (2015)

    CAS  Google Scholar 

  11. Q. Zhou, A. Xing, J. Li, D. Zhao, K. Zhao, M. Lei, Electrochim. Acta 209, 379–388 (2016)

    CAS  Google Scholar 

  12. H. Eskandarloo, A. Badiei, M.A. Behnajady, Ind. Eng. Chem. Res. 53, 7847–7855 (2014)

    CAS  Google Scholar 

  13. X. Qu, D. Xie, L. Gao, F. Du, Mater. Sci. Semicond. Process 26, 657–662 (2014)

    CAS  Google Scholar 

  14. G. Wang, F. Wu, X. Zhang, M. Luo, N. Deng, J. Photochem. Photobiol. A 179, 49–56 (2006)

    CAS  Google Scholar 

  15. V.A. Salomatova, I.P. Pozdnyakov, V.V. Yanshole, F. Wu, V.P. Grivin, N.M. Bazhin, V.F. Plyusnin, J. Photochem. Photobiol. A 274, 27–32 (2014)

    CAS  Google Scholar 

  16. S. Khaoulani, H. Chaker, C. Cadet, E. Bychkov, L. Cherif, A. Bengueddach, S. Fourmentin, C. R. Chimie 18, 23–31 (2015)

    CAS  Google Scholar 

  17. X. Zhang, F. Wu, Z. Wang, Y. Guo, N. Deng, J. Mol. Catal. A 301, 134–139 (2009)

    CAS  Google Scholar 

  18. S. Pitchaimuthu, S. Rajalakshmi, N. Kannan, P. Velusamy, Desalin. Water Treat 52, 3392–3402 (2014)

    CAS  Google Scholar 

  19. S. Pitchaimuthu, P. Velusamy, Water Sci. Technol. 69(1), 113–119 (2013)

    Google Scholar 

  20. P. Velusamy, S. Pitchaimuthu, S. Rajalakshmi, N. Kannan, J. Adv. Res. 5(1), 19–25 (2014)

    CAS  Google Scholar 

  21. G. Alhakimi, L.H. Studnicki, M. Al-Ghazali, J. Photochem. Photobiol. A 154, 219–228 (2003)

    CAS  Google Scholar 

  22. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, RSC Adv. 4, 36959–36966 (2014)

    CAS  Google Scholar 

  23. D.V. Pinjari, A.B. Pandit, Ultrason. Sonochem. 18, 1118–1123 (2011)

    CAS  Google Scholar 

  24. M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas, N.R. Khalid, Appl. Surf. Sci. 285P, 702–712 (2013)

    Google Scholar 

  25. P. Jongnavakita, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Appl. Surf. Sci. 258, 8192–8198 (2012)

    Google Scholar 

  26. L. Li, X. Zhang, W. Zhang, L. Wang, X. Chen, Y. Gao, Colloids Surf. A 457, 134–141 (2014)

    CAS  Google Scholar 

  27. G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Ind. J. Chem. 48A, 480–488 (2009)

    CAS  Google Scholar 

  28. J.-C. Sin, S.-M. Lam, K.-T. Lee, A.R. Mohamed, J. Mol. Catal. A 409, 1–10 (2015)

    CAS  Google Scholar 

  29. H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, Y. Su, J. Photochem. Photobiol. A 223, 157–164 (2011)

    CAS  Google Scholar 

  30. M. Meksi, H. Kochkar, G. Berhault, C. Guillard, J. Mol. Catal. A 409, 162–170 (2015)

    CAS  Google Scholar 

  31. M.F.A. Taleb, Carbohydr. Polym. 114, 65–72 (2014)

    CAS  Google Scholar 

  32. S. Khodadoust, A. Sheini, N. Armand, Spectrochim. Acta A 92, 91–95 (2012)

    CAS  Google Scholar 

  33. A. Kaur, A. Umar, S.K. Kansal, J. Colloid Interface Sci. 459, 257–263 (2015)

    CAS  Google Scholar 

  34. R. Velmurugan, B. Krishnakumar, B. Subash, M. Swaminathan, Sol. Energy Mater. Sol. Cells 108, 205–212 (2013)

    CAS  Google Scholar 

  35. C.-C. Lin, L.-J. Hsu, Powder Technol. 246, 351–355 (2013)

    CAS  Google Scholar 

  36. L. Pan, Z. Zhang, J. Mater. Sci. Mater. Electron 21, 1262–1269 (2010)

    CAS  Google Scholar 

  37. I. Othman, R.M. Mohamed, F.M. Ibrahem, J. Photochem. Photobiol. A 189, 80–85 (2007)

    CAS  Google Scholar 

  38. S. Rajalakshmi, P. Velusamy, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5941-z

    Article  Google Scholar 

  39. S. Gao, T. Feng, C. Feng, N. Shang, C. Wang, J. Colloid and Interface Sci. 466, 284–290 (2016)

    CAS  Google Scholar 

  40. M. Pirhashemi, A. Habibi-Yangjeh, Appl. Surf. Sci. 283, 1080–1088 (2013)

    CAS  Google Scholar 

  41. P. Bansal, D. Sud, J. Mol. Catal. A 374–375, 66–72 (2013)

    Google Scholar 

  42. S. Hao, J. Hou, P. Aprea, F. Pepe, Appl. Catal. B 160–161, 566–573 (2014)

    Google Scholar 

  43. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Powder Technol. 241, 49–59 (2013)

    CAS  Google Scholar 

  44. S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 153, 412–417 (2008)

    CAS  Google Scholar 

  45. R. Verma, S.K. Samdarshi, J. Singh, J. Phys. Chem. C 119, 23899–23909 (2015)

    CAS  Google Scholar 

  46. X. Zhang, F. Wu, N. Deng, J. Hazard. Mater. 185, 117–123 (2011)

    CAS  Google Scholar 

  47. X. Zhang, X. Li, N. Deng, Ind. Eng. Chem. Res. 51, 704–709 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Management and the Principal of Ayya Nadar Janaki Ammal College, Sivakasi, India for providing the necessary facilities. Authors also acknowledge the Department of Industrial Chemistry and Department of Physics, Alagappa University, Karaikudi for recoding SEM, UV-DRS spectra and Powder XRD patterns respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velusamy Ponnusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurunathan, L., Ponnusamy, V. Photocatalytic effect of (TiO2/CeO2) with support of β-cyclodextrin for enhanced performance under solar light. J Mater Sci: Mater Electron 28, 18666–18674 (2017). https://doi.org/10.1007/s10854-017-7816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7816-3

Navigation