Skip to main content
Log in

Structural and optical characterization of Y2Ti2O7 and Y2Ti1.5Hf0.5O7 nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single step auto ignited combustion technique has been used to prepare nanosized Y2Ti2O7 (YTO) and Y2Ti1.5Hf0.5O7 (YTHO). The structure of the samples analyzed by X-ray diffraction method is found to be cubic with space group (Z = 8). This is further confirmed using vibrational spectroscopic analysis. The average crystalline sizes of both the samples are calculated using Scherrer formula and using High Resolution Transmission Electron Microscopy. Energy dispersive spectroscopic analysis confirmed the presence of elements in the stoichiometric ratio. Optical studies of the as prepared samples are carried out by UV–Vis and Photoluminescence spectroscopy. The optical band gap determined using Kubelka–Munk formalism and Tauc’s plot are found to be 3.8 and 3.1 eV for YTO and YTHO, respectively. Photocatalytic activity is analyzed by the degradation of methylene blue (MB) under UV light. The percentage degradation of YTO and YTHO are 40 and 19.5% respectively. The rate of degradation is also analyzed for both the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.Y. Xiao, Adv. Condens. Matter. Phys. 2013, 1–8 (2013)

    Google Scholar 

  2. B.Z. Malkin, A.R. Zakirov, Phys. Rev. B 70, 075112 (2004)

    Google Scholar 

  3. M.C. Hatnean, M.R. Lees, G. Balakrishnan, J. Cryst. Growth 418, 1–6 (2015)

    Google Scholar 

  4. B.P. Singh, A.K. Parchur, R.K. Singh, A.A. Ansari, P. Singh, S.B. Rai, Chem. Phys. 15, 3480–3489 (2013)

    CAS  Google Scholar 

  5. L.K. Joseph, K.R. Dayas, S. Damodar, B. Krishnan, K. Krishnan, K. Krishnankutty, V.P.N. Nampoori, P. Radhakrishnan, Spectrochim. Acta A 71, 1281–1285 (2008)

    Google Scholar 

  6. Y. Tong, P. Xue, F. Jian, L. Lu, X. Wang, X. Yang, Mater. Sci. Eng. B 150, 194–198 (2008)

    CAS  Google Scholar 

  7. A.F. Fuents, K. Boulahya, M. Maczka, J. Hanuza, U. Amador, Solid State Sci. 7, 343–353 (2005)

    Google Scholar 

  8. B. Xia, H. Huang, Y. Xie, Mater. Sci. Eng. B 57, 150–154 (1999)

    Google Scholar 

  9. F. Matteucci, G. Cruciani, M. Dondi, G. Baldi, A. Barzanti, Acta Mater. 55, 2229–2238 (2007)

    CAS  Google Scholar 

  10. M.A. Subramanian, G. Aravamudan, G.V.S. Rao, Prog. Solid State Chem. 15, 55–143 (1983)

    CAS  Google Scholar 

  11. J.B. Goodenough, R.N. Castellano, J. Solid State Chem. 44, 108–112 (1982)

    CAS  Google Scholar 

  12. P.P. Rao, S.J. Liji, K.R. Nair, P. Koshy, Mater. Lett. 58, 1924–1927 (2004)

    CAS  Google Scholar 

  13. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Afr. J. Chem. 70, 44–48 (2017)

    CAS  Google Scholar 

  14. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025–1034 (2017)

    CAS  Google Scholar 

  15. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, J. Clust. Sci. 26, 1305–1318 (2015)

    CAS  Google Scholar 

  16. G. Ravi, S. Mansouri, S. Pallai, M. Vithal, Indian J. Chem. 54A, 20–26 (2015)

    CAS  Google Scholar 

  17. A. Khanna, V.K. Shetty, Sol. Energy 99, 67–76 (2014)

    CAS  Google Scholar 

  18. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269–8285 (2005)

    CAS  Google Scholar 

  19. M. Wang, J. Ioccozia, L. Sun, C. Lin, Z. Lin, Energy Environ. Sci. 7, 2182 (2014)

    CAS  Google Scholar 

  20. Z. Shen, Y. Wang, W. Chen, H.L.W. Chan, L. Bing, J. Nanomater. (2015). doi:10.1155/2015/327130

    Article  Google Scholar 

  21. A. Fujishima, T.N. Rao, D.A. Try, J. Photochem. Photobiol. B 1, 1–21 (2000)

    CAS  Google Scholar 

  22. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci. 26(7), 5440–5445 (2015)

    CAS  Google Scholar 

  23. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 28, 4345 (2017)

    CAS  Google Scholar 

  24. M. Kumar, M.A. Kulandainathan, I.A. Raj, R. Chandrasekaran, R. Pattabiraman, Mater. Chem. Phys. 92, 295–302 (2005)

    Google Scholar 

  25. K.K. Rao, T. Banu, M. Vithal, G.Y.S.K. Swamy, K.R. Kumar, Mater. Lett. 54, 205–210 (2002)

    Google Scholar 

  26. D. Chen, R. Xu, Mater. Res. Bull. 33, 409–417 (1998)

    CAS  Google Scholar 

  27. Y. Matsumura, M. Yoshinaka, K. Hirota, O. Yamaguchi, Solid State Commun. 104, 341–345 (1997)

    CAS  Google Scholar 

  28. Y. Tong, P. Xue, F. Jian, L. Lua, X. Wang, X. Yang, J. Mater. Sci. Eng. B 150, 194–198 (2008)

    CAS  Google Scholar 

  29. R.C. Pati, S. Radhakrishnan, S. Pethkar, K. Vijaymohan, J. Mater. Res. 16, 1982–1988 (2001)

    Google Scholar 

  30. J.K. Thomas, H. Padmakumar, S. Solomon, C.N. George, K. Joy, J. Koshy, Phys. Status Solidi A 204(9), 3102–3107 (2007)

    CAS  Google Scholar 

  31. H. Padma Kumar, S. Vidya, S. SaravanaKumar, C. Vijayakumar, Sam Solomon, J.K. Thomas, J. Asian Ceram. Soc. 3, 64–69 (2015)

    Google Scholar 

  32. V.S. Shrivastava, Arch. Appl. Sci. Res. 4, 1244–1254 (2012)

    CAS  Google Scholar 

  33. H. Yang, S. Zhu, N. Pan, J. Appl. Polym. Sci. 92, 3201–3210 (2004)

    CAS  Google Scholar 

  34. I. Georgaki, E. Vasilaki, N. Katsarakis, Am. J. Anal. Chem. 5, 518–534 (2014)

    Google Scholar 

  35. M. Ahmad, Z. Iqbal, Z. Hong, J. Yang, Y. Zhang, N.R. Khalid, E. Ahmed, Integr. Ferroelectr. 145, 108–114 (2013)

    CAS  Google Scholar 

  36. B. Santara, P.K. Giri, K. Imakita, M. Fujii, J. Phys. Chem. (2013). doi:10.1021/jp408249q

    Article  Google Scholar 

  37. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 21–28 (2014)

    CAS  Google Scholar 

  38. C. Martinez, L.M. Canle, M.I. Fernandez, J.A. Santaballa, J. Faria, Appl. Catal. B 102, 563–571 (2011)

    CAS  Google Scholar 

  39. M.M. Hassan, W. khan, A. Azam, A.H. Naqvi, J. Lumin. 145, 160–166 (2014)

    CAS  Google Scholar 

  40. H.P. Kumar, C. Vijayakumar, C.N. George, S. Solomon, R. Jose, J.K. Thomas, J. Koshy, J. Alloys Compd. (2007). doi:10.1016/j.jalcom

    Article  Google Scholar 

  41. K. Gupta, R.P. Singh, A. Pandey, A. Pandey, J. Nanotechnol. 4, 345–351 (2013)

    Google Scholar 

  42. B.P. Mandal, P.S.R. Krishnan, A.K. Tyagi, J. Solid State Chem. 183, 41–45 (2010)

    CAS  Google Scholar 

  43. F.N. Sayed, V. Grover, K. Bhattacharyya, D. Jain, A. Arya, C.G.S. Pillai, A.K. Tyagi, J. Inorg. Chem. 50, 2354–2365 (2011)

    CAS  Google Scholar 

  44. W.G. Fateley, N.T. McDevitt, F.F. Bentley, Appl. Spectrosc. 25, 155–173 (1971)

    Google Scholar 

  45. S. Saha, http://hdl.handle.net/2005/2244

  46. F.L. Martínez, M. Toledano-Luque, J.J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, I. Mártil, J. Phys. D 40, 5256–5265 (2007)

    Google Scholar 

  47. A.B. Murphy, Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)

    CAS  Google Scholar 

  48. R. Terki, G. Bertrand, H. Aourag, C. Coddet, Physica B 392, 341–347 (2007)

    CAS  Google Scholar 

  49. P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, D.D. Kumar, P.V. Thomas, Thin Solid Films 550, 121–127 (2014)

    CAS  Google Scholar 

  50. S. Mathew, A. Kumar Prasad, T. Benoy, P.P. Rakesh, P. Radhakrishnan, J. Fluoresc. 22, 1563–1569 (2012)

    CAS  Google Scholar 

  51. N.J. Shivaramu, B.N. Lakshminarasappa, K.R. Nagabhushana, F. Singh, Spectrochim. Acta A 154, 220–231 (2016)

    CAS  Google Scholar 

  52. J.D. Fidelus, S. Yatsunenko, M. Godlewski, W. Paskowicz, E. Werner-Malento, W. Lojkowski, Scr. Mater. 61, 415–418 (2009)

    CAS  Google Scholar 

  53. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumar, R.P.S. Chakradhar, Spectrochim. Acta A 96, 532–540 (2012)

    CAS  Google Scholar 

  54. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumar, R.P.S. Chakradhar, Bull. Mater. Sci. 35, 519–527 (2012)

    CAS  Google Scholar 

  55. M. Jayasimhadri, B.V. Ratnam, J. Kiwan, S.L. Ho, Y. Soung-Soo, J. Jung-Hyun, Thin Solid Films 518, 6210–6213 (2010)

    CAS  Google Scholar 

  56. H. Yang, J. Ouyang, X. Zhang, N. Wang, C. Du, J. Alloys Compd. 458, 474–478 (2008)

    CAS  Google Scholar 

  57. P. Sujitha, B. SubbaRao, K.V.R. Murthy, Int. J. Eng. Res. Technol. 2, 1931–1935 (2013)

    Google Scholar 

  58. P. Sujitha, B. SubbaRao, K.V.R. Murthy, Proc. ISBN-978-93-81583-24-1 (2012)

  59. P. Sujitha, B. SubbaRao, K.V.R. Murthy, Int. J. Sci. Technol. 15, 1072–1076 (2013)

    Google Scholar 

  60. F.T. Li, Y. Zhao, Y. Liu, Y.J. Hao, R.H. Liu, D.S. Zhao, Chem. Eng. J. 173, 750–759 (2011)

    CAS  Google Scholar 

  61. N.C. Castillo, A. Heel, T. Graule, C. Pulgarin, Appl. Catal. B 95, 335–347 (2010)

    CAS  Google Scholar 

  62. E.M. Samsudin, S.N. Goh, T.Y. Wu, T.T. Ling, S. Bee, A. Hamid, J.C. Juan, Sains Malays. 44(7), 1011–1019 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anila, S., John, A., Thomas, J.K. et al. Structural and optical characterization of Y2Ti2O7 and Y2Ti1.5Hf0.5O7 nanomaterials. J Mater Sci: Mater Electron 28, 18497–18507 (2017). https://doi.org/10.1007/s10854-017-7797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7797-2

Navigation