Skip to main content

Advertisement

Log in

A study on the electrochemical performance of nitrogen and oxygen co-doped carbon dots derived from a green precursor for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) finds applications in the field of optoelectronics, energy conversion, energy storage, etc. In this work, the electrochemical properties of CDs (obtained from a green source, lignite) were established to employ them for supercapacitor application. CDs-modified carbon felt working electrode was fabricated and its electrochemical properties were studied and compared with lignite-modified carbon felt working electrode. The CDs-modified electrode showed a superior capacitance compared with lignite-modified electrode which was evidenced from their cyclic voltammograms, electron impedance spectroscopy, and charge/discharge studies. The highest observed specific capacitance value for CDs-based electrode is 30.5 F g−1 which is 14 times higher than that of lignite-modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.J. Mahon, C.J. Drummond, Essay: supercapacitors-nanostructured materials and nanoscale processes contributing to the next mobile generation. Aust. J. Chem. 54, 473–476 (2001)

    Article  CAS  Google Scholar 

  2. A. Nishino, Capacitors: operating principles, current market and technical trends. J. Power Sour. 60, 137–147 (1996)

    Article  CAS  Google Scholar 

  3. J. Nickerson, Beyond the technology; focusing on market demand, Proceedings of the 9th international seminar on double layer capacitors and similar energy storage devices. Deerfield Beach, FL, 1999

  4. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    CAS  Google Scholar 

  5. A. Janes, H. Kurig, E. Lust, Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 45, 1226–1233 (2007)

    Article  Google Scholar 

  6. S.W. Hwang, S.H. Hyun, Capacitance control of carbon aerogel electrodes. J. Non-cryst. Solids 347, 238–245 (2004)

    Article  CAS  Google Scholar 

  7. X. Zhao, H. Tian, M. Zhu, K. Tian, J.J. Wang, F. Kang, R.A. Outlaw, Carbon nanosheets as the electrode material in supercapacitors. J. Power Sources 194, 1208–1212 (2009)

    Article  CAS  Google Scholar 

  8. E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Beguin, Nanotubular materials as electrodes for supercapacitors. Fuel Process. Technol. 77, 213–219 (2002)

    Article  Google Scholar 

  9. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  CAS  Google Scholar 

  10. T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)

    Article  CAS  Google Scholar 

  11. S. Mao, G. Lu, J. Chen, Three-dimensional graphene-based composites for energy applications. Nanoscale 7, 6924–6943 (2015)

    Article  CAS  Google Scholar 

  12. V. Thirumal, A. Pandurangan, D. Jayakumar, R. Ilangovan, Modified solar power: electrochemical synthesis of Nitrogen doped few layer graphene for supercapacitor applications. J Mater. Sci. 27, 3410–3419 (2016)

    CAS  Google Scholar 

  13. V. Thirumal, A. Pandurangan, R. Jayavel, K.S. Venkatesh, N.S. Palani, R. Ragavan, R. Ilangovan, Single pot electrochemical synthesis of functionalized and phosphorus doped graphene nanosheets for supercapacitor applications. J Mater Sci 26, 6319–6328 (2015)

    CAS  Google Scholar 

  14. K. Chen, L. Chen, Y. Chen, H. Bai, L. Li, Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J. Mater. Chem. 22, 20968–20976 (2012)

    Article  CAS  Google Scholar 

  15. Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C.E. Banks, A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6, 3665–3675 (2013)

    Article  CAS  Google Scholar 

  16. Y. Xie, H. Du, Electrochemical capacitance of carbon quantum dots-polypyrrole/titania nanotube hybrid. RSC Adv. 5, 89689–89697 (2015)

    Article  CAS  Google Scholar 

  17. Y.Q. Dang, S.Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors. Nanomaterials 6, 212–223 (2016)

    Article  Google Scholar 

  18. X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015)

    Article  CAS  Google Scholar 

  19. T. Senthil Kumar, R. Suresh, P. Dharmalingam, R. Kaviyarasan, P. Ramamurthy, Fluorescent carbon nanodots from lignite: unveiling the impeccable evidence for quantum confinement. Phys. Chem. Chem. Phys. 18, 12065–12073 (2016)

    Article  Google Scholar 

  20. N. Dhenadhayalan, K. Lin, R. Suresh, P. Ramamurthy, Unravelling the multiple emissive states in citric-acid-derived carbon dots. J. Phys. Chem. C 120, 1252–1261 (2016)

    Article  CAS  Google Scholar 

  21. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    Article  CAS  Google Scholar 

  22. K.A. Shiral Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, Y.P. Sun, Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7, 8363–8376 (2015)

    Google Scholar 

  23. V. Ramanan, T. Senthil Kumar, R. Kaviyarasan, R. Suresh, S. Rajkumar, P. Ramamurthy, Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain. Chem. Eng 4, 4724–4731 (2016)

    Article  Google Scholar 

  24. E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)

    Article  CAS  Google Scholar 

  25. D. Qu, Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002)

    Article  CAS  Google Scholar 

  26. S. Biniak, A. Świątkowski, M. Pakuła, Chemistry and Physics of Carbon, by L.R. Radovic ed. vol. 27 (Marcel Dekker, New York, 2001), pp. 125

    Google Scholar 

  27. K. Laszlo, E. Tombacz, K. Josepovits, Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39, 1217–1228 (2001)

    Article  CAS  Google Scholar 

  28. L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1–9 (2013)

    Google Scholar 

  29. M. Vellakkat, D. Hundekal, Electrical conductivity and supercapacitor properties of polyaniline/chitosan/nickel oxide honeycomb nanocomposite. J. Appl. Polym. Sci. 134, 44536–44548 (2017)

    Article  Google Scholar 

  30. R. Signorelli, D.C. Ku, J.G. Kassakian, J.E. Schindall, Electrochemical double-layer capacitors using carbon nanotube electrode structures. Proc. IEEE 97, 1837–1847, (2009)

    Article  CAS  Google Scholar 

  31. B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991)

    Article  CAS  Google Scholar 

  32. A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105–253108 (2010)

    Article  Google Scholar 

  33. F.P. Du, J.J. Wang, C.Y. Tang, C.P. Tsui, X.P. Zhou, X.L. Xie, Y.G. Liao, Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance. Nanotechnology 23, 475704–475714 (2012)

    Article  Google Scholar 

  34. P. Dharmalingam, P. Ramamurthy, Fabrication of CDs-PMMA nanocomposite thin films: prevention of aggregation of CDs. Proceedings of the international workshop on advanced functional materials and devices, 8–12 January 2017, pp. 54, ISBN:978-93-81402-38-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmalingam, P., Ramanan, V., Karthikeyan, G.G. et al. A study on the electrochemical performance of nitrogen and oxygen co-doped carbon dots derived from a green precursor for supercapacitor applications. J Mater Sci: Mater Electron 28, 18489–18496 (2017). https://doi.org/10.1007/s10854-017-7796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7796-3

Navigation