Skip to main content
Log in

Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver-decorated tin oxide/reduced graphene oxide (Ag/SnO2/rGO) composite was synthesized by a facile and cost-effective hydrothermal method for enhancing gas-sensing performance toward ethanol. The morphology and structure of the Ag/SnO2/rGO composite was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectrum (EDS), transmission electron microscopy (TEM) and Brunauere-Emmette-Teller (BET). The XRD and EDS studies demonstrated that Ag nanoparticles were present in the Ag/SnO2/rGO composite. The SEM and TEM studies indicated that the rutile SnO2 nanoparticles were well distributed on reduced graphene oxide sheets. According to the BET results, Ag/SnO2/rGO composite had a high specific surface area of 191.583 m2/g. In addition, the sensor based on Ag/SnO2/rGO exhibited perfect sensing performance toward ethanol than the sensors based on the SnO2 and SnO2/rGO owing to its 3D porous nanostructure, p–n heterojunctions and Ag decoration. The gas-sensing results indicated that the sensor with 2 wt% silver concentration exhibited good gas-sensing properties, and the sensitivity of the sensor to 400 ppm ethanol was 95.3 at the optimum operating temperature (280 °C), which almost doubled that of the SnO2/rGO sensor (55.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Nikan, A.A. Khodadadi, Y. Mortazavi, Sens. Actuators B 184, 196–204 (2013)

    Article  Google Scholar 

  2. Y. Xiao Y, Q.Y. Yang, Z.Y. Wang, R. Zhang, Y. Gao, P. Sun, Y.F. Sun, G.Y. Lu, Sens. Actuators B 227, 419–426 (2016)

    Article  Google Scholar 

  3. X.F. Chu, X.H. Zhu, Y.P. Dong, W. B. Zhang, L.S. Bai, J. Mater. Sci. Technol. 31, 913–917 (2015)

    Article  Google Scholar 

  4. G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, R. Pasricha, Carbon 50, 385–394 (2013)

    Article  Google Scholar 

  5. D.Z. Zhang, H.Y. Chang, P. Li, R.H. Liu, J. Mater. Sci. 27, 3723–3730 (2016)

    Google Scholar 

  6. N.M. Shaalan, M. Rashad, A.H. Moharram, M.A. Abdel-Rahim, Mater. Sci. Semicond. Process. 46, 1–5 (2016)

    Article  Google Scholar 

  7. W.H. Tan, X. F. Ruan X, Q.X. Yu, Z.T. Yu, X.T. Huang, Sensors 15, 352 (2014)

    Article  Google Scholar 

  8. Y.J. Shi, Sens. Actuators B 46, 163–168 (1998)

    Article  Google Scholar 

  9. S.B. Patil, P.P. Patil, M.A. More, Sens. Actuators B 125, 126–130 (2007)

    Article  Google Scholar 

  10. J. Liang, J.F. Liu, N. Li, W.J. Li, J. Alloys. Compd. 671, 283–290 (2016)

    Article  Google Scholar 

  11. R.K. Joshi, F.E. Kruis, Appl. Phys. Lett. 89, 1869 (2006)

    Google Scholar 

  12. J.R. Yu, G.Z. Huang, Y.J. Yang, Sens. Actuators B 66, 286–288 (2000)

    Article  Google Scholar 

  13. T.V.K. Karthik, M.D.L.L. Olvera, A. Maldonado, H.G. Pozos, Sensors 16, 1283 (2016)

    Article  Google Scholar 

  14. J. Aguilar-Leyva, A. Maldonado, M.D.L.L. Olvera, Mater. Charact. 58, 740–744 (2007)

    Article  Google Scholar 

  15. S. Ge, H.X. Zheng, Y.F. Sun, Z. Jin, J.H. Shan, C. Wang, J. Alloys. Compd. 659, 127–131 (2016)

    Article  Google Scholar 

  16. X.Q. Zhou, X.L. Wang, B. Wang, Z.M. Chen, C.Y. He, Y.Q. Wu, Sens. Actuators B 193, 340–348 (2014)

    Article  Google Scholar 

  17. P. Baraneedharan, S. Alexander, S. Ramaprabhu, J. Appl. Electrochem. 46, 1–11 (2016)

    Article  Google Scholar 

  18. S. Khan, J. Ali, Harsh, M. Husain, M. Zulfequar, Phys. E 81, 320–325 (2016)

    Article  Google Scholar 

  19. D.Z. Zhang, A.M. Liu, H.Y. Chang, B.K. Xia, Rsc. Adv. 5, 3016–3022 (2014)

    Article  Google Scholar 

  20. A.S.M.I. Uddin, K.M. Lee, G.S. Chung, Sens. Actuators B 216, 33–40 (2015)

    Article  Google Scholar 

  21. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.B.T. Nguyen, R.S. Ruoff, Chem. Mater. 20, 6592–6594 (2008)

    Article  Google Scholar 

  22. Y. Wang, X.D. Wang, G.Y. Yi, Y.W. Xu, L.X. Zhou, Y. Wei, J. Porous Mat. 23, 1–8 (2016)

    Article  Google Scholar 

  23. D.Z. Zhang, N.L. Yin, B.K. Xia, J. Mater. Sci. 26, 5937–5945 (2015)

    Google Scholar 

  24. F. Liu, X.F. Chu, Y.P. Dong, W.B. Zhang, W.Q. Sun, L.M. Shen, Sens. Actuators B 188, 469–474 (2013)

    Article  Google Scholar 

  25. F.L. Meng, N.N. Hou, Z. Jin, B. Sun, Z. Guo, L.T. Kong, X.H. Xiao, H. Wu, M.Q. Li, J.H. Liu, Sens. Actuators B 209, 975–982 (2015)

    Article  Google Scholar 

  26. J. Ding, J.W. Zhu, P.C. Yao, J. Li, H.Q. Bi, X. Wang, Ind. Eng. Chem. Res. 54, 150811050629003 (2015)

    Google Scholar 

  27. B.Y. Kim, J.S. Cho, J.W. Yoon, C.W. Na, C.S. Lee, J.H. Ahn, Y.C. Kang, J.H. Lee, Sens. Actuators B 234, 353–360 (2016)

    Article  Google Scholar 

  28. X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Sens. Actuators B 155, 716–721 (2011)

    Article  Google Scholar 

  29. N.L. Tarwal, A.V. Rajgure, J.Y. Patil, M.S. Khandekar, S.S. Suryavanshi, P.S. Patil, M.G. Gang, J.H. Kim, J.H. Jang, J. Mater. Sci. 48, 7274–7282 (2013)

    Article  Google Scholar 

  30. D.V. Ponnuvelua, B. Pullithadathila, A.K. Prasadb, S. Dharab, A. Ashoka, K. Mohamedb, Appl. Surf. Sci. 355, 726–735 (2015)

    Article  Google Scholar 

  31. Z.B. Ye Z, H.L. Tai, T. Xie, Z. Yuan, C.H. Liu, Y.J. Jiang, Sens. Actuators B 223, 149–156 (2016)

    Article  Google Scholar 

  32. D.M. Guo, P.J. Cai, J. Sun, W.N. He, X.H. Wu, T. Zhang, X. Wang, X.T. Zhang, Carbon 99, 571–578 (2015)

    Article  Google Scholar 

  33. Q.Q. Lin, M.J. Li, Y. Yang, Sens. Actuators B 173, 139–147 (2012)

    Article  Google Scholar 

  34. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano. Lett. 8, 3137 (2013)

    Article  Google Scholar 

  35. O. Akhavan, Carbon 49, 11–18 (2011)

    Article  Google Scholar 

  36. Z.W. Chen, Z.D. Lin, Y.Y. Hong, M.Y. Li, N. Xu, J. Mater. Sci. 27, 2633–2639 (2016)

    Google Scholar 

  37. Z.Y. Wang, Y. Zhang, S. Liu, T. Zhang, Sens. Actuators B 155, 893–903 (2016)

    Article  Google Scholar 

  38. J.B. Cui, D.J. Wang, T.F. Xie, Y.H. Lin, Sens. Actuators B 186, 165–171 (2013)

    Article  Google Scholar 

  39. Y. Li, T. Lv, F.X. Zhao, Q. Wang, X.X. Lian, Y.L. Zou, Electron. Mater. Lett. 11, 890–895 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51404097, 60877028, 51172065, 51504083, U1404613), Specialized Research Fund for the Doctoral Program of Higher Education (20124116120002), Foundation of He’nan Scientific and Technology key project (132102210251), and the Education Department Natural Science Foundation of He’nan Province (15A430027, 13A430315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyun Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Yi, G., Xu, Y. et al. Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method. J Mater Sci: Mater Electron 28, 17049–17057 (2017). https://doi.org/10.1007/s10854-017-7630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7630-y

Navigation