Skip to main content
Log in

Structural, optical and multiferroic properties of pure and Dy modified YMnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 19 September 2017

This article has been updated

Abstract

A soft chemical co-precipitation method has been proposed for the synthesis of YMnO3 (YMO) and Dy-modified YMO (YDMO) powders. X-ray diffraction (XRD) pattern confirms the existence of single phase in YMO and YDMO powders with hexagonal structure belonging to P63 cm space group. The crystallite sizes deduced from XRD line width analysis is found to be within 38–28 nm. A broadening and shifting of Raman-active phonon modes towards lower frequencies have been observed in YDMO in comparison to YMO. Dielectric measurements showed a gradual increase of dielectric constant values with increasing of Dy concentration. From the temperature dependent dielectric measurements, both YMO and YDMO samples showed a dielectric anomaly around 340 °C signifies the relaxation of doubly ionized oxygen vacancies. Magnetization versus magnetic field (M–H) curves of YMO and YDMO measured at room temperature suggests a paramagnetic behaviour. Compared to YMO, leakage current densities in YDMO samples are found to be improved by an order and more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 19 September 2017

    The original version of this article unfortunately contained a mistake in the corresponding author information. Jung Hyun Jeong is unfortunately omitted in the original version. Jung Hyun Jeong and N. V. Giridharan are the corresponding authors of the paper.

References

  1. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  2. W. Prellier, M.P. Singh, P. Murugavel, J. Phys. Condens. Matter. 17, R803 (2005)

    Article  Google Scholar 

  3. H. Chu, L.W. Martin, M.B. Halcomb, R. Ramesh, Mater. Today 10, 16–23 (2007)

    Article  Google Scholar 

  4. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, J. Rare Earths 35, 374–381 (2017)

    Article  Google Scholar 

  5. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, J. Clust. Sci. 26, 1305–1318 (2015)

    Article  Google Scholar 

  6. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    Article  Google Scholar 

  7. H.L. Yakel, Acta Crystallogr. 8, 394 (1955)

    Article  Google Scholar 

  8. H.L. Yakel, W.C. Koehler, E.F. Bertaut, E.F. Forrat, Acta Crystallogr. 16, 957–962 (1963)

    Article  Google Scholar 

  9. M. Fiebig, Th. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818–820 (2002)

    Article  Google Scholar 

  10. B.B. van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, Nat. Mater. 3, 164–170 (2004)

    Article  Google Scholar 

  11. B.B. van Aken, A. Meetsma, T.T.M. Palstra, Acta Crystallogr. Sect. C 57, 230–232 (2001)

    Article  Google Scholar 

  12. A.S. Gibbs, K.S. Knight, P. Lightfoot, Phys. Rev. B 83, 094111–094119 (2011)

    Article  Google Scholar 

  13. P.A. Sharma, J.S. Ahn, N. Hur, S. Park, S.B. Kim, S. Lee, J.G. Park, S. Guha, S.W. Cheong, Phys. Rev. Lett. 93, 177202–177205 (2004)

    Article  Google Scholar 

  14. T.C. Han, W.L. Hsu, W.D. Lee, Nanoscale Res. Lett. 6, 201 (2011)

    Article  Google Scholar 

  15. J. Park, S. Lee, M. Kang, K.H. Jang, C. Lee, S.V. Streltsov, V.V. Mazurenko, M.V. Valentyuk, J.E. Medvedeva, T. Kamiyama, J.G. Park, Phys. Rev. B 82, 054428–054436 (2010)

    Article  Google Scholar 

  16. K. Tadanaga, H. Kitahata, T. Minami, N. Fujimura, T. Ito, J. Sol-Gel Sci. Technol. 13, 903–908 (1998)

    Article  Google Scholar 

  17. H.W. Zheng, Y.F. Liu, W.Y. Zhang, S.J. Liu, H.R. Zhang, J. Appl. Phys. 107, 053901 (2010)

    Article  Google Scholar 

  18. S.L. Samal, W. Green, S.E. Lofland, K.V. Ramanujachary, D. Das, A.K. Ganguli, J. Solid State Chem. 181, 61–66 (2008)

    Article  Google Scholar 

  19. M. Ramezani, A. Sobhani-Nasab A. Davoodi, J. Mater. Sci. Mater. Electron. 26, 5440–5445 (2015)

    Article  Google Scholar 

  20. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)

    Article  Google Scholar 

  21. T.C. Han, P.J. Wu, Y.L. Shih, J. Appl. Phys. 111, 07B511 (2012)

    Article  Google Scholar 

  22. Y.J. Yoo, Y.P. Lee, J.S. Park, J.H. Kang, J. Kim, B.W. Lee, M.S. Seo, J. Appl. Phys. 112, 013903 (2012)

    Article  Google Scholar 

  23. M.E. Amrani, V.T. Phuoc, M.R. Ammarb, M. Zaghrioui, F. Gervais, Solid State Sci. 14, 1315–1320 (2012)

    Article  Google Scholar 

  24. S. Issing, A. Pimenov, V.Yu. Ivanov, A.A. Mukhin, J. Geurts, Phys. Rev. B 81, 024304 (2010)

    Article  Google Scholar 

  25. D. Vega, G. Polla, A.G. Leyva, P. Konig, H. Lanza, A. Esteban, J. Solid State Chem. 156, 458–463 (2001)

    Article  Google Scholar 

  26. S.D. Kaushik, A.K. Singh, V. Siruguri, S. Patnaik, AIP Conf. Proc. 1349, 1283–1284 (2011)

    Article  Google Scholar 

  27. A. Munoz, J.A. Alonso, M.J. Martínez-Lope, Phys. Rev. B 62, 9498–9510 (2000)

    Article  Google Scholar 

  28. C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach (Plenum, New York, 1998), p. 213

    Book  Google Scholar 

  29. T. Mokkelbost, I. Kaus, T. Grande, M.A. Einarsrud, Chem. Mater. 16, 5489–5494 (2004)

    Article  Google Scholar 

  30. S. Kharrazi, D.C. Kundaliya, S.W. Gosavi, S.K. Kulkarni, T. Venkatesan, S.B. Ogale, J. Urban, S. Park, S.W. Cheong, Solid State Commun. 138, 395–398 (2006)

    Article  Google Scholar 

  31. G.V. Subbarao, J.R. Ferraro, Appl. Spectrosc. 24, 436–445 (1970)

    Article  Google Scholar 

  32. M.N. Iliev, H.G. Lee, V.N. Popov, M.V. Abrashev, A. Hamed, R.L. Meng, C.W. Chu, Phys. Rev. B 56, 2488–2494 (1997)

    Article  Google Scholar 

  33. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253–290 (1981)

    Article  Google Scholar 

  34. H. Fukumura, S. Matsui, H. Harima, K. Kisoda, T. Takahashi, T. Yoshimura, N. Fujimura, J. Phys. Condens. Matter. 19, 365239 (2007)

    Article  Google Scholar 

  35. M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, J. Exp. Nanosci. 8, 341–346 (2013)

    Article  Google Scholar 

  36. X.X. Wang, S.H. Choy, X.G. Tang, H.L.W. Chan, J. Appl. Phys. 97, 104101–104104 (2005)

    Article  Google Scholar 

  37. M. Tomczyk, P.M. Vilarinho, A. Moreira, A. Almeida, J. Appl. Phys. 110, 064116 (2011)

    Article  Google Scholar 

  38. G.V. Rao, B.M. Wanklyn, C.N.R. Rao, J. Phys. Chem. Solids 32, 345–358 (1971)

    Article  Google Scholar 

  39. K.J. Choi, W.C. Shin, S.G. Yoon, Thin Solid Films 384, 146–150 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Giridharan.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10854-017-7874-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneeswaran, M., Jang, J.W., Choi, B.C. et al. Structural, optical and multiferroic properties of pure and Dy modified YMnO3 . J Mater Sci: Mater Electron 28, 16788–16796 (2017). https://doi.org/10.1007/s10854-017-7593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7593-z

Navigation