Skip to main content
Log in

Effect of microstructure on electrical properties of Li and Cr substituted nickel oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LCNO (Li0.35Cr0.10Ni0.55O) sample was prepared by modified sol–gel method and annealed at different temperatures (400, 800 and 1000 °C) in order to have variation in the size of grains and grain boundaries. The crystallinity and phase purity have been studied by employing the X-ray diffraction (XRD) technique. All the samples are crystallize to cubic symmetry with \(Fm\overline 3 m\) space group and, XRD patterns could be analysed by employing the Rietveld method. The microstructural and elemental analysis of the sample has been carried out by using the field emission scanning electron microscopy (FESEM). The grain size increases with the increase in annealing temperature which leads to increase the dielectric constant with the grain size. Interestingly, the enhancement of dielectric constant with the increase in grain size could be explained by the Barrier Layer Capacitances (BLCs) model. The frequency dispersion of dielectric constant could be explained by the Maxwell Wagner relaxation model. Furthermore, it is also observed that the activation energy obtained from dielectric relaxation analysis is comparable with the activation energy obtained by impedance analysis (Cole–Cole). In addition, the correlation between microstructure (grains and grain boundaries) with electrical transport properties of LCNO has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Spearing, Acta Mater. 48, 179 (2000)

    Article  Google Scholar 

  2. N. Setter, R. Waser, Acta Mater. 48, 151 (2000)

    Article  Google Scholar 

  3. K. V. Rao, A. Smakula, J. Appl. Phys. 36, 6 (1965)

    Google Scholar 

  4. A.J. Bosman, C. Crevecoeur, Phys. Rev. 144, 2 (1966).

    Article  Google Scholar 

  5. Q. Zheng, H. Fan, C. Long, J. Alloys Compd. 511, 90 (2012)

    Article  Google Scholar 

  6. H. A. Ardakani, M. Alizadeh, R. Amini, M. R. Ghazanfari, Ceram. Int. 38, 4217 (2012)

    Article  Google Scholar 

  7. J.V. Elp, H. Eskes, P. Kuiper, G.A. Sawatzky, Phys. Rev. B 45, 1612 (1992)

    Article  Google Scholar 

  8. P. Thongbai, T. Yamwong, S. Maensiri, J. Appl. Phys. 104, 074109 (2008)

    Article  Google Scholar 

  9. P. Thongbai, S. Pongha, T. Yamwong, S. Maensiri, Appl. Phys. Lett. 94, 022908 (2009)

    Article  Google Scholar 

  10. V.S. Puli, R. Picchini, C. Orozco, C.V. Ramana, Chem. Phys. Lett. 649, 115 (2016)

    Article  Google Scholar 

  11. J. Khemprasit, B. Khumpaitool, Ceram. Int. 41, 663 (2015)

    Article  Google Scholar 

  12. S. Manna, S.K. De, Solid State Commun. 150, 399 (2010)

    Article  Google Scholar 

  13. L. Kumar, P. Kumar, A. Narayan, M. Kar, Int. Nano Lett. 3, 8 (2013)

    Article  Google Scholar 

  14. L. Kumar, M. Kar, J. Magn. Magn. Mater. 323, 2042 (2011)

    Article  Google Scholar 

  15. D. Burow, K. Sergeeva, S. Calles, K. Schorb, A. Borger, C. Roth, P. Heitjans, J. Power Sources 307, 806 (2016)

    Article  Google Scholar 

  16. A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, J. Magn. Magn. Mater. 430, 29 (2017)

    Article  Google Scholar 

  17. N. Sharma, B.S. Patial, N. Thakur, Appl. Phys. A 122, 209 (2016)

    Article  Google Scholar 

  18. S. Supriya, S. Kumar, M. Kar, J. Appl. Phys. 120, 215106 (2016)

    Article  Google Scholar 

  19. Y. Zhi, A. Chen, J. Appl. Phys. 91, 794 (2002)

    Article  Google Scholar 

  20. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)

    Article  Google Scholar 

  21. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  22. Y. Lin, J. Wang, L. Jiang, Y. Chen, C.W. Nan, Appl. Phys. Lett. 85, 5664 (2004)

    Article  Google Scholar 

  23. Y.H. Lin, M. Li, C.W. Nan, J. Li, Appl. Phys. Lett. 89, 032907 (2006)

    Article  Google Scholar 

  24. B. Cheng, Y.H. Lin, A. Mei, J.N. Cai, C.W. Nan, J. He, Appl. Phys. Lett. 92, 142903 (2008)

    Article  Google Scholar 

  25. I.I. Fabrikant, H. Hotop, J. Chem. Phys. 128, 124308 (2008)

    Article  Google Scholar 

  26. R.A. Pawar, S.S. Desai, S.M. Patange, S.S. Jadhav, K.M. Jadhav, Physica B 510, 74 (2017)

    Article  Google Scholar 

  27. T.I. Chupakhina, N.I. Kadyrova, N.V. Melnikova, O.I. Gyrdasova, E.A. Yakovleva, Y.G. Zainulin, Mater. Res. Bull. 77, 190 (2016)

    Article  Google Scholar 

  28. S. Supriya, S. Kumar, M. Kar, J. Mater. Sci. 17, 1 (2017)

    Google Scholar 

  29. C.J. Raj, G. Paramesh, B.S. Prakash, K.R.S. Preethi, K.B.R. Varma, Mater. Res. Bull. 74, 1 (2016)

    Article  Google Scholar 

  30. A. Chouket, W.C. Koubaa, A. Cheikhrouhou, V. Optasanu, O. Bidault, M. Khitouni, J. Alloys Compd. 662, 467 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to financial assistance for UGC, UGC-ref. No.: 4050, 4051/(NET-June 2013) for JRF and IIT Patna for providing the working platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Supriya, S., Pradhan, L.K. et al. Effect of microstructure on electrical properties of Li and Cr substituted nickel oxide. J Mater Sci: Mater Electron 28, 16679–16688 (2017). https://doi.org/10.1007/s10854-017-7580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7580-4

Navigation