Skip to main content
Log in

Bulk growth of organic 4-hydroxy l-proline (HLP) single crystals grown by conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic single crystals of 4-hydroxy l-proline (HLP) were grown by conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method in an aqueous medium. With a vision to improve the crystal quality, SR method was adopted and optically transparent HLP single crystal, (110) directed, with the size of 80 mm length and 15 mm diameter was grown. The crystalline structure of the grown crystal was analyzed by single crystal X-ray diffraction (SXRD) analysis. The conventional and SR method grown HLP crystals were characterized and the results were compared by UV–Vis–NIR, photoluminescence, chemical etching, Vickers microhardness, dielectric permittivity, dielectric loss, photoconductivity, photoacoustic, laser damage threshold (LDT) and second harmonic generation (SHG) measurements. The thermal property of the grown crystal was carried out by thermogravimetric (TG) and differential thermal analysis (DTA). The SHG efficiency of HLP crystal was determined using Kurtz–Perry powder technique. The comparative optical transmittance study clearly indicates that the transmission of SR method grown HLP crystal is 10% higher and quite good in the entire visible and near infrared region which suggest its suitability for optical device applications. The distribution of structural defects and the etch pit density (EPD) of the grown crystals were determined by chemical etching analysis. The Vickers microhardness measurement reveals that the hardness of SR method grown HLP crystal is higher compared to conventional method grown crystal. The dielectrics, photoconductivity, photoacoustic and laser damage threshold studies clearly indicate that the crystal grown by SR method possesses good quality compared to conventional method grown crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M. Narayan Bhatt, S.M. Dharamprakash, J. Cryst. Growth 242, 245–252 (2002)

    Article  Google Scholar 

  2. S. Dhanuskodi, K. Vasantha, Cryst. Res. Technol. 39, 259–265 (2004)

    Article  Google Scholar 

  3. J.B. Brice, Crystal Growth Process. (Wiley, New York, 1986)

    Google Scholar 

  4. A.W. Vere, Crystal Growth: Principles and Progress. (Glasgow Publication, New York, 1987)

    Book  Google Scholar 

  5. A. Wooster, Experimental Crystal Growth. (Clarendon Press, New York, 1957)

    Google Scholar 

  6. T. Baraniraj, P. Philominathan, J. Miner. Mater. Charact. Eng. 10, 805–815 (2011)

    Google Scholar 

  7. J.B. Cohen, Practical Organic Chemistry. (Macmillan and Co, London, 1930)

    Google Scholar 

  8. I.L. Finar, Stereochemistry and the Chemistry of Natural Products, 5th edn, vol. 2. (Longman Publishing Group, ELBS Edition, London, 1975)

    Google Scholar 

  9. K. Mohana Priyadarshini, A. Chandramohan, G. Anandha Babu, P. Ramasamy, Optik-Int. J. Light Electron. Opt. 124, 1390–1395 (2014)

    Article  Google Scholar 

  10. J. Donohue, N. Kenneth Trueblood, Acta. Cryst. 5, 419–431 (1952)

    Article  Google Scholar 

  11. M. Shakir, S.K. Kushwaha, K.K. Maurya, R.C. Bhatt, Rashmi, M.A. Wahab, G. Bhagavannarayana, Mater. Chem. Phys. 120, 566–570 (2010)

    Article  Google Scholar 

  12. J.T.J. Prakash, S. Kumararaman, Mater. Lett. 62, 4097–4099 (2008)

    Article  Google Scholar 

  13. S. Rajyalakshmi, B. Brahmaji, Samatha, K. Ramachandra Rao, M.C. Rao, Int. J. Chem. Technol. Res. 9, 7–14 (2016)

    Google Scholar 

  14. N. Prabavathi, L. Jayanthi, V. Sivasubramanian, M. Senthil Pandian, P. Ramasamy, Mater. Res. Inn. 21, 189–194 (2016)

    Article  Google Scholar 

  15. R. Manimekalai, A. Puhal Raj, C. Ramachandra Raja, Opt. Phot. J. 2, 216–221 (2012)

    Article  Google Scholar 

  16. A. Senthil, P. Ramasamy, J. Cryst. Growth 311, 4720–4724 (2009)

    Article  Google Scholar 

  17. S. Anie Roshan, C. Joseph, M.A. Ittyachen, Mater. Lett. 49, 299–302 (2001)

    Article  Google Scholar 

  18. V. Venkataramanan, S. Maheswaran, J.N. Sherwood, H.L. Bhat, J. Cryst. Growth 79, 605–610 (1997)

    Article  Google Scholar 

  19. J. Tauc, R. Grigorovici, A. Vancu, Phys. State Solid 15, 627–637 (1966)

    Article  Google Scholar 

  20. P. Vasudevan, S. Gokul Raj, S. Sankar, Spectrochim. Acta A 106, 210–215 (2013)

    Article  Google Scholar 

  21. R. Krishnamurthy, R. Rajasekaran, B.S. Samuel, Spectrochim. Acta A 104, 310–314 (2013)

    Article  Google Scholar 

  22. E. Selvakumar, A. Chandramohan, G. Anandha Babu, P. Ramasamy, J. Cryst. Growth 401, 323–326 (2013)

    Article  Google Scholar 

  23. A. Arunkumar, P. Ramasamy, J. Cryst. Growth 388, 124–131 (2014)

    Article  Google Scholar 

  24. F. Helen, G. Kanchana, Indian J. Pure Appl. Phys. 52, 821–828 (2014)

    Google Scholar 

  25. G. Anandha Babu, P. Ramasamy, Curr. Appl. Phys. 10, 214–220 (2010)

    Article  Google Scholar 

  26. A. Thirunavukkarsua, T. Sujatha, P.R. Umarania, M. NizamMohideen, A. Silambarasan, R. Mohan Kumar, J. Cryst. Growth 460, 42–47 (2017)

    Article  Google Scholar 

  27. M. Parthasarthy, R. Gopalakrishnan, J. Cryst. Growth 372, 100–104 (2013)

    Article  Google Scholar 

  28. K. Senthil Kannan, S. Gunasekaran, K. Seethalakshmi, A. Bhrigunath Prasad, Int. J. Sci. Eng. Res. 4, 2229–5518 (2013)

    Google Scholar 

  29. V. Sivasubramani, M. Senthil Pandian, K. Boopathi, P. Ramasamy, Mater. Res. Inn. (2016). doi:10.1080/14328917.2016.1264859

    Google Scholar 

  30. B.W. Mott, Micro Indentation Hardness Testing. (Butterworths, London, 1956)

    Google Scholar 

  31. K. Sangwal, M. Hordyjewicz, B. Surowaska, J. Opt, Adv. Mater. 4, 875–882 (2002)

    Google Scholar 

  32. E.M. Onitsch, Mikroskopie 95(15), 12–14 (1956)

    Google Scholar 

  33. S. Jerome Das, R. Gopinathan, Cryst. Res. Technol. 27, 17–21 (1992)

    Article  Google Scholar 

  34. M. Senthil Pandian, N. Pattanaboonme, P. Ramasamy, P. Manyum, J. Cryst. Growth 314, 207–2012 (2010)

    Article  Google Scholar 

  35. W.A. Wooster, Rep. Prog. Phys. 16, 62–82 (1953)

    Article  Google Scholar 

  36. G. Peramaiyan, P. Pandi, B.M. Sornamurthy, G. Bhagavanarayana, R. Mohan Kumar, Spectrochim. Acta A 95, 310–316 (2012)

    Article  Google Scholar 

  37. K. Senthil, S. Kalainathan, A. Ruban Kumar, Spectrochim. Acta A 124, 603–610 (2014)

    Article  Google Scholar 

  38. M. Dhavamurthy, G. Peramaiyan, R. Mohan, J. Cryst. Growth 399, 13–18 (2014)

    Article  Google Scholar 

  39. M. Magesh, G. Anadha Babu, P. Ramasamy, J. Cryst. Growth 324, 201–206 (2011)

    Article  Google Scholar 

  40. C. Balarew, R. Duhlew, J. Solid State Chem. 55, 1–6 (1984)

    Article  Google Scholar 

  41. U. Von Hundelshausen, Phys. Lett. A 19, 405–406 (1971)

    Article  Google Scholar 

  42. S. Sagadevan, M. Priya, Int. J. Mater. Sci. Eng. 3(2), 159–166 (2015)

    Google Scholar 

  43. J.D. Jackson, Classical Electrodynamics, vol. 321. (Wiley, New York, 1978)

    Google Scholar 

  44. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    Article  Google Scholar 

  45. A. Dev, S. Chakrabarti, S. Kar, S. Chaudhuri, J. Nanopart. Res. 7, 195–201 (2005)

    Article  Google Scholar 

  46. V.N. Joshi, Photoconductivity. (Marcel Dekker, New York, 1990)

    Google Scholar 

  47. I.M. Ashraf, H.A. Elshaikhand, A.M. Badar, Cryst. Res. Technol. 39, 63–79 (2003)

    Article  Google Scholar 

  48. T. Somasundaram, P. Ganguly, C.N.R. Rao, J. Phy-C. Sol. Stat. Phys. 19, 2137–2151 (1986).

    Article  Google Scholar 

  49. S.A. Martin Britto Dhas, E. Ramachandran, P. Raji, K. Ramachandran, S. Natrajan, Cryst. Res. Technol. 42, 601–606 (2007)

    Article  Google Scholar 

  50. P. Raji, C. Sanjeeviraja, K. Ramachandran, Cryst. Res. Technol. 39, 617–622 (2004)

    Article  Google Scholar 

  51. P. Charpentier, F. Lepoutre, L. Bertrand, J. Appl. Phys. 53, 608–614 (1982)

    Article  Google Scholar 

  52. V. Sivasubramani, S.A. Britto Dhas, M. Senthil Pandian, P. Ramasamy, Mater. Res. Inn. 20, 67–75, (2016)

    Article  Google Scholar 

  53. S.A. Martin Britto Dhas, G. Bhgavanarayanan, S. Natrajan, J. Cryst. Growth 309, 48–52 (2007)

    Article  Google Scholar 

  54. W.L. Barros Melo, R.M. Faria, Appl. Phys. Lett. 67, 3892–3894 (1995)

    Article  Google Scholar 

  55. J. Gong, J. Mater. Sci. Lett. 19, 515–517 (2000)

    Article  Google Scholar 

  56. K.E. Montgomery, F.P. Millovich, J. Appl. Phys. 68, 3979–3982 (1990)

    Article  Google Scholar 

  57. H. Nakatani, W.R. Bosenberg, L.K. Cheng, C.L. Tang, Appl. Phys. Lett. 53, 2587–2589 (1988)

    Article  Google Scholar 

  58. K. Rajesh, P. Praveen Kumar, J. Mater. 2014, 1–5 (2014)

    Article  Google Scholar 

  59. G. Peramaiyan, R. Mohan Kumar, G. Bhagavannarayana, J. Cryst. Growth 408, 14–18 (2014)

    Article  Google Scholar 

  60. N. Vijayan, G. Bhagavanarayanan, R. Ramesh Babu, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542–1546 (2006)

    Article  Google Scholar 

  61. S.A. Martin Britto Dhas, M. Suresh, G. Bhagavannarayana, S. Natarajan, J. Cryst. Growth 309, 48–52 (2007)

    Article  Google Scholar 

  62. N. Prabavathi, L. Jayanthi, K. Sudha, Chem. Sci. Rev. Lett. 5, 272–278 (2016)

    Google Scholar 

  63. K. Rajesh, A. Mani, V. Thayanithi, P. Praveen Kumar, Int. J. Opt. 2016, 1–5 (2016)

    Article  Google Scholar 

  64. M. Prakash, D. Geetha, M. Lydia Caroline, Spectrochim. Acta A 107, 16–23 (2013)

    Article  Google Scholar 

  65. P. Anandan, M. Arivandhan, Y. Hayakaw, D. Rajan Babu, R. Jayavel, G. Ravi, Spectrochim. Acta A 121, 508–513 (2014)

    Article  Google Scholar 

  66. N. Vijayan, K. Natrajan, A. Slawin, C.K. Shashidharan Nair, G. Bagavanarayana, Cryst. Growth Des. 7, 445–448 (2007)

    Article  Google Scholar 

  67. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)

    Article  Google Scholar 

  68. P. Shan, T. Sun, H. Chen, H. Liu, S. Chen, X. Liu, Y. Kong, J Xu, Sci. Rep. 6(25201), 1–10 (2016)

    Google Scholar 

  69. A. Ruby, S. Alfred Cecil Raj, World J. Sci. Technol. 3, 11–15 (2013)

    Google Scholar 

  70. B. Anitha, S. Rathakrishnan, R. Umamaheswari, A.J.A. Pragasam, Indian J. Sci. Technol. 7, 1014–1017 (2014)

    Google Scholar 

  71. A.V. Mohammed, J.A.P. Arulappa, S.T. Ganesan, S. Sagadevan, Mater. Res. 18, 828–832 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SAIF, IIT-Madras for single crystal XRD analysis. We also thank NCIF, National College, Tiruchirappalli for Vickers microhardness studies, ACIC, St. Joseph’s College, Tiruchirappalli for PL measurement. The authors also gratefully acknowledge Dr. S. Kalainathan, Centre for Crystal Growth, VIT University, Vellore for providing the Laser damage threshold facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Prabavathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanthi, L., Prabavathi, N., Sivasubramani, V. et al. Bulk growth of organic 4-hydroxy l-proline (HLP) single crystals grown by conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method. J Mater Sci: Mater Electron 28, 15354–15369 (2017). https://doi.org/10.1007/s10854-017-7421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7421-5

Navigation