Skip to main content
Log in

Comparative investigation on slow evaporation solution technique and Sankaranarayanan-Ramasamy (SR) method semi-organic Piperazinium Tetrachlorozincate Monohydrate (PTCZM) single crystal for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The unidirectional < 002 > Piperazinium Tetrachlorozincate Monohydrate (PTCZM) crystal of dimension 14 cm length and 2 cm diameter was successfully grown by the Sankaranarayanan-Ramasamy (SR) method. The grown PTCZM crystal was subjected to Single crystal X-ray diffraction (SXRD), Powder X-ray diffraction (PXRD), High-Resolution X-ray diffraction (HRXRD), UV–Visible NIR, Fourier Transform Infrared (FTIR) analysis, Photoconductivity, birefringence and Z-scan analysis. The structural properties revealed that the PTCZM crystal belongs to a monoclinic crystal system with a space group P121/c. The high crystalline perfection and lower defect density are confirmed using High-resolution X-ray diffraction (HR-XRD) and chemical etching analysis, respectively. The UV–Visible-NIR results show that the SR method-grown PTCZM crystal has 8% higher optical transmittance value compared to the SEST grown PTCZM crystal. The structural–functional groups were identified by Fourier Transform Intra-red (FTIR) spectroscopy analysis. The negative photoconductive nature of PTCZM crystal was investigated by photoconductivity analysis. The optical homogeneity of SEST and SR method-grown crystals was measured by the Birefringence method. The third-order nonlinear optical (NLO) properties of the grown crystal such as absorption coefficient, refractive index and susceptibility range values estimated by the Z-scan technique suggest that the grown crystal material PTCZM can serve as a promising candidate for nonlinear optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

On reasonable request, the corresponding author will make the whole datasets created and/or analysed during the current work available.

References

  1. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, X. Xu, F. Zhang, Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 6, 14490–14495 (2016). https://doi.org/10.1039/C5RA24761F

    Article  ADS  CAS  Google Scholar 

  2. M. Anis, G.G. Muley, M.I. Baig, W.A. Khan, S.P. Ramteke, E.E.S. Massoud, Optimizing first-, second- and third-order optical traits of zinc tris-thiourea sulphate (ZTS) crystal by l-tyrosine for photonic device applications. Indian J. Phys. 97, 251–254 (2023). https://doi.org/10.1007/s12648-022-02381-5

    Article  ADS  CAS  Google Scholar 

  3. M. Anis, S.M. Azher, M.D. Shirsat, M. Imran Anees, M. Mukhtar, M.I. Baig, H.H. Somaily, Comparative structural, linear-non-linear optical, laser damage threshold, dielectric and thermal analysis of pristine and L-cysteine influenced KH2PO4 crystal for NLO applications. Inorg. Chem. Commun. 134, 109019 (2021). https://doi.org/10.1016/j.inoche.2021.109019

    Article  CAS  Google Scholar 

  4. M. Anis, M. Shkir, M.I. Baig, S.P. Ramteke, G.G. Muley, S. AlFaify, H.A. Ghramh, Experimental and computational studies of L-tartaric acid single crystal grown at optimized pH. J. Mol. Struct. 1170, 151–159 (2018). https://doi.org/10.1016/j.molstruc.2018.05.073

    Article  ADS  CAS  Google Scholar 

  5. M. Anis, M.I. Baig, G.G. Muley, G. Rabbani, M.D. Shirsat, M. Shkir, H.A. Ghramh, Gamma glycine crystal for efficient second harmonic generation of 1064 nm Nd:YAG laser light. Mater. Lett. 233, 238–241 (2018). https://doi.org/10.1016/j.matlet.2018.09.013

    Article  CAS  Google Scholar 

  6. M. Jiang, Q. Fang, Organic and semiorganic nonlinear optical materials. Adv. Mater. 11, 1147–1151 (1999). https://doi.org/10.1002/(SICI)1521-4095(199909)11:13%3c1147::AID-ADMA1147%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  7. R. Subaranjani, J. Madhavan, M.V.A. Raj, Density functional theoretical and experimental investigation on L - asparaginium picrate-a nonlinear optical material. Mater. Today: Proc. 8, 108–116 (2019). https://doi.org/10.1016/j.matpr.2019.02.087

    Article  CAS  Google Scholar 

  8. X.-S. Liu, X. Liu, X.-Q. Wang, Growth, physicochemical and optical characterization of a novel organometallic nonlinear optical crystal: CdHg(SCN)4(C2H5NO)2. Gongneng Cailiao/J. Funct. Mater. 45, 12055–12059 (2014). https://doi.org/10.3969/j.issn.1001-9731.2014.12.010

    Article  CAS  Google Scholar 

  9. U. Olsher, R.M. Izatt, J.S. Bradshaw, N.K. Dalley, Coordination Chemistry of Lithium Ion: A Crystal and Molecular Structure Review (ACS Publications, 2002)

    Google Scholar 

  10. G.R. Ester, R. Price, P.J. Halfpenny, The relationship between crystal growth and defect structure: a study of potassium hydrogen phthalate using x-ray topography and atomic force microscopy. J. Phys. D Appl. Phys. 32, A128 (1999). https://doi.org/10.1088/0022-3727/32/10A/327

    Article  ADS  CAS  Google Scholar 

  11. M. Senthil Pandian, P. Ramasamy, Conventional slow evaporation and Sankaranarayanan-Ramasamy (SR) method grown diglycine zinc chloride (DGZC) single crystal and its comparative study. J. Cryst. Growth 312, 413–419 (2010). https://doi.org/10.1016/j.jcrysgro.2009.11.011

    Article  ADS  CAS  Google Scholar 

  12. P. Karuppasamy, M.S. Pandian, P. Ramasamy, Crystal growth and characterization of semi organic nonlinear optical (NLO) piperazinium tetrachlorozincate monohydrate (PTCZ) single crystal. AIP Conf. Proc. 1942, 100005 (2018). https://doi.org/10.1063/1.5028970

    Article  CAS  Google Scholar 

  13. N. Prabavathi, A. Nilufer, V. Krishnakumar, FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 483–493 (2014). https://doi.org/10.1016/j.saa.2013.10.102

    Article  ADS  CAS  Google Scholar 

  14. A. Parkin, I.D.H. Oswald, S. Parsons, Structures of piperazine, piperidine and morpholine. Acta Cryst B 60, 219–227 (2004). https://doi.org/10.1107/S0108768104003672

    Article  CAS  Google Scholar 

  15. S. Ranga Reddy, P. Manikyamba, Solvent effects in the reaction between piperazine and benzyl bromide. J. Chem. Sci. 119, 613–616 (2007). https://doi.org/10.1007/s12039-007-0076-7

    Article  Google Scholar 

  16. M. El-Glaoui, I. Ben Gharbia, V. Ferretti, C. Ben Nasr, Piperazinediium tetra­chloridocadmate monohydrate. Acta Crystallogr Sect E Struct Rep Online 67, m340 (2011). https://doi.org/10.1107/S1600536811005095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G. Maheshwaran, K. Velsankar, G. Parvathy, R. Kaliammal, M. Krishna Kumar, S. Sudhahar, Effective growth and characterization of piperazinium orthophthalate single crystal yielding high second harmonic generation efficiency. Chinese J. Phys. 64, 65–78 (2020). https://doi.org/10.1016/j.cjph.2020.01.005

    Article  ADS  CAS  Google Scholar 

  18. T.A. Hegde, A. Dutta, T.C. Sabari Girisun, G. Vinitha, A novel organic-inorganic ionic cocrystal - piperazine-1,4-diium tetrachloridocuprate(II) dihydrate delivering efficient optical limiting. Chem. Phys. Lett. 781, 138971 (2021). https://doi.org/10.1016/j.cplett.2021.138971

    Article  CAS  Google Scholar 

  19. R. Anbarasan, P. Eniya, J. Kalyana Sundar, Experimental and quantum chemical investigation on piperazinium hexachloro stannous trihydrate single crystal for second harmonic generation applications. J. Electron. Mater. 48, 7686–7695 (2019). https://doi.org/10.1007/s11664-019-07578-9

    Article  ADS  CAS  Google Scholar 

  20. K. Sankaranarayanan, P. Ramasamy, Unidirectional seeded single crystal growth from solution of benzophenone. J. Cryst. Growth 280, 467–473 (2005). https://doi.org/10.1016/j.jcrysgro.2005.03.075

    Article  ADS  CAS  Google Scholar 

  21. R. Kefi, C.B. Nasr, Crystal structure of piperazinium tetrachlorozincate monohydrate, (C4H12N2)[ZnCL4] · H2O. Zeitschrift für Kristallographie—New Cryst. Struct. 220, 251–252 (2005). https://doi.org/10.1524/ncrs.2005.220.14.251

    Article  Google Scholar 

  22. M. Anis, S.P. Ramteke, M.D. Shirsat, G.G. Muley, M.I. Baig, Novel report on γ-glycine crystal yielding high second harmonic generation efficiency. Opt. Mater. 72, 590–595 (2017). https://doi.org/10.1016/j.optmat.2017.07.007

    Article  ADS  CAS  Google Scholar 

  23. P. Karuppasamy, T. Kamalesh, M. SenthilPandian, P. Ramasamy, Crystal growth and physico-chemical characterization of semi-organic [C4H12N2] ZnCl4·H2O single crystal for laser applications. J. Mater. Sci. Mater. Electron. 32, 16467–16480 (2021). https://doi.org/10.1007/s10854-021-06203-y

    Article  CAS  Google Scholar 

  24. B.W. Batterman, H. Cole, Dynamical diffraction of X-rays by perfect crystals. Rev. Mod. Phys. 36, 681–717 (1964). https://doi.org/10.1103/RevModPhys.36.681

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. R. Priya, S. Anitha, P.S.L. Mageshwari, R. Ragu, Exploration on transport process of optically active third-order nonlinear disodium succinate hexahydrate (β phase) single crystals encompassing Self-focusing nature. J. Mater. Sci. Mater. Electron. 31, 21288–21302 (2020). https://doi.org/10.1007/s10854-020-04641-8

    Article  CAS  Google Scholar 

  26. Y. Zhang, X. Xu, Modeling oxygen ionic conductivities of ABO3 perovskites through machine learning. Chem. Phys. 558, 111511 (2022). https://doi.org/10.1016/j.chemphys.2022.111511

    Article  CAS  Google Scholar 

  27. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  ADS  CAS  Google Scholar 

  28. I.M. Pritula, Y.N. Velikhov, Some aspects of UV absorption of NLO KDP crystals, in Operational Characteristics and Crystal Growth of Nonlinear Optical Materials. (SPIE, 1999), pp.202–208

    Chapter  Google Scholar 

  29. H. Klapper, Generation and propagation of dislocations during crystal growth. Mater. Chem. Phys. 66, 101–109 (2000). https://doi.org/10.1016/S0254-0584(00)00342-4

    Article  CAS  Google Scholar 

  30. P. Rekha, G. Peramaiyan, M. Nizam Mohideen, R. Mohan Kumar, R. Kanagadurai, Synthesis, growth and characterization of a new organic three dimensional framework: Piperazin-1-ium 4-aminobenzenesulfonate. J. Cryst. Growth 441, 18–25 (2016). https://doi.org/10.1016/j.jcrysgro.2016.02.005

    Article  ADS  CAS  Google Scholar 

  31. S. Gunasekaran, B. Anita, Spectral investigation and normal coordinate analysis of piperazine, IJPAP 46 (12) (Dec 2008). http://nopr.niscpr.res.in/handle/123456789/3024. Accessed 15 April 2023

  32. A. Silambarasan, E.N. Rao, S.V. Rao, P. Rajesh, P. Ramasamy, Bulk growth, crystalline perfection and optical characteristics of inversely soluble lithium sulfate monohydrate single crystals grown by the conventional solvent evaporation and modified Sankaranarayanan-Ramasamy method. CrystEngComm 18, 2072–2080 (2016). https://doi.org/10.1039/C6CE00012F

    Article  CAS  Google Scholar 

  33. D.W. Fischer, M.C. Ohmer, P.G. Schunemann, T.M. Pollak, Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference. J. Appl. Phys. 77, 5942–5945 (1995). https://doi.org/10.1063/1.359175

    Article  ADS  CAS  Google Scholar 

  34. T. Henningsen, N.B. Singh, Crystal characterization by use of birefringence interferometry. J. Cryst. Growth 96, 114–118 (1989). https://doi.org/10.1016/0022-0248(89)90281-9

    Article  ADS  CAS  Google Scholar 

  35. R. Bhatt, S. Ganesamoorthy, I. Bhaumik, A. Sexana, A.K. Karnal, P.K. Gupta, J. George, K. Ranganathan, Photorefractive properties of Fe, Zn co-doped near stoichiometric LiNbO3 crystals at moderate intensities (0.5–6W/cm2). Opt. Laser Technol. 50, 112–117 (2013). https://doi.org/10.1016/j.optlastec.2013.02.019

    Article  ADS  CAS  Google Scholar 

  36. D. Yuan, Z. Gao, S. Zhang, Z. Jia, J. Shu, Y. Li, Z. Wang, X. Tao, Linear and nonlinear optical properties of terbium calcium oxyborate single crystals. Opt. Express 22, 27606–27616 (2014). https://doi.org/10.1364/OE.22.027606

    Article  ADS  CAS  PubMed  Google Scholar 

  37. F.D. (Fred D. Bloss, An introduction to the methods of optical crystallography, (No Title) (n.d.). https://cir.nii.ac.jp/crid/1130282272592376832. Accessed 6 Oct 2023

  38. T.Y. Fan, C.E. Huang, B.Q. Hu, R.C. Eckardt, Y.X. Fan, R.L. Byer, R.S. Feigelson, Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4. Appl. Opt. 26, 2390–2394 (1987). https://doi.org/10.1364/AO.26.002390

    Article  ADS  CAS  PubMed  Google Scholar 

  39. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  ADS  CAS  Google Scholar 

  40. S. Chinnasami, P. Rajesh, R. Bhatt, I. Bhaumik, P. Ramasamy, A.K. Karnal, Effect of xylenol orange on the crystalline perfection, optical, piezoelectric and NLO behavior of unidirectionally grown imidazolium L-Tartrate single crystal. Chin. J. Phys. 67, 135–146 (2020). https://doi.org/10.1016/j.cjph.2020.05.032

    Article  CAS  Google Scholar 

  41. T.J. Sloanes, Measurement and application of optical nonlinearities in indium phosphide, cadmium mercury telluride and photonic crystal fibres, Thesis, University of St Andrews, 2009. https://research-repository.st-andrews.ac.uk/handle/10023/723. Accessed 6 Oct 2023

  42. M. Sheik-bahae, A.A. Said, E.W.V. Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989). https://doi.org/10.1364/OL.14.000955

    Article  ADS  CAS  PubMed  Google Scholar 

  43. S. Bhattacharjee, N. Mazumder, S. Mondal, K. Panigrahi, A. Banerjee, D. Das, S. Sarkar, D. Roy, K.K. Chattopadhyay, Size-modulation of functionalized Fe3O4: nanoscopic customization to devise resolute piezoelectric nanocomposites. Dalton Trans. 49, 7872–7890 (2020). https://doi.org/10.1039/D0DT01167C

    Article  CAS  PubMed  Google Scholar 

  44. B.S.I. Lasalle, S.P. Muthu, K. Anitha, P. Ramasamy, Synthesis, crystal growth and characterization of piperazinium 5-nitrosalicylate (P5NS) single crystal for nonlinear optical (NLO) applications. J. Mol. Struct. 1286, 135650 (2023). https://doi.org/10.1016/j.molstruc.2023.135650

    Article  CAS  Google Scholar 

  45. R.U. Mullai, S.R. Kanuru, R. Arul Jothi, E. Vinoth, S. Gopinath, S. Vetrivel, Piperazine-based zirconium oxy-chloride (PzZrOCl) single crystal: a third-order nonlinear optical material for optoelectronic device applications. J. Mater. Sci. Mater. Electron. 32, 11952–11968 (2021). https://doi.org/10.1007/s10854-021-05825-6

    Article  CAS  Google Scholar 

  46. G. Parvathy, R. Kaliammal, K. Velsankar, G. Vinitha, K. Sankaranarayanan, R. Mohan Kumar, S. Sudhahar, Piperazinium bis (5-chlorosalicylate)—a new third order nonlinear optical single crystal. J. Mol. Struct. 1228, 129728 (2021). https://doi.org/10.1016/j.molstruc.2020.129728

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SAIF IIT-Madras for the SXRD analysis. One of the authors Dr. Muthu Senthil Pandian thanks Science and Engineering Research Board (SERB) (CRG/2022/002734) for the financial support under Core Research Grant.

Funding

Dr. Muthu Senthil Pandian received financial support from Science and Engineering Research Board (SERB) (CRG/2022/002734) under Core Research Grant, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

BSIL: Methodology, writing- original draft preparation; MSP: investigation; PK: software; VS: support for data analysis; PR: writing- reviewing and editing.

Corresponding author

Correspondence to Muthu Senthil Pandian.

Ethics declarations

Conflict of interest

I am enclosing the manuscript entitled “Comparative investigation on slow evaporation solution technique and Sankaranarayanan-Ramasamy (SR) method for the growth of Semi-organic Piperazinium Tetrachlorozincate Monohydrate (PTCZM) Single Crystal for Optoelectronic Applications” for publication in your esteemed journal of “Journal of Materials Science: Materials in Electronics”. The authors certify that the manuscript is an original article, is not under consideration by any other journal and has not been published previously. The authors are aware of its content and approve this submission. No conflict of interest exists in this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahaya Infant Lasalle, B., Senthil Pandian, M., Karuppasamy, P. et al. Comparative investigation on slow evaporation solution technique and Sankaranarayanan-Ramasamy (SR) method semi-organic Piperazinium Tetrachlorozincate Monohydrate (PTCZM) single crystal for optoelectronic applications. J Mater Sci: Mater Electron 35, 242 (2024). https://doi.org/10.1007/s10854-024-12025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12025-5

Navigation