Skip to main content

Advertisement

Log in

Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, optoelectronic and thermoelectric properties of Ca5Al2Sb6 under applied external pressures have been studied using the full potential linear augmented plane wave method. WIEN2k code is used with considering the generalized gradient approximation (GGA), modified Becke–Johnson (MBJ) and modified Becke–Johnson + spin orbit (mBJ + SO) functionals based on density functional theory (DFT). From electronic results, the size of the band gap decreases with increasing pressure and the nature of the band gap shift from direct to the indirect. In high pressure (>35.7 GPa by mBJ + SO), the band gap is also completely disappeared and the nature of compound is changed to the metallic. The calculated anisotropic optical properties such as the static dielectric function, increase with decreasing the size of band gap and increasing of pressure. As a novel result, the thermoelectric performance of n-type and p-type doping of Ca5Al2Sb6 is related to the value of pressure. According to the thermoelectric results, the n-type one has the highest ZT in comparison with the p-type Ca5Al2Sb6 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.B. Luo, Y.X. Wang, Y.L. Yan, G. Yang, J.M. Yang, J. Mater. Chem. A 2, 15159 (2014)

    Article  Google Scholar 

  2. G. Yang, H. Cui, D. Ma, C. He, J. Appl. Phys. 116, 223709 (2014)

    Article  Google Scholar 

  3. U. Subbarao, S. Sarkar, V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, S.C. Peter, Inorg. Chem. 52, 13631 (2013)

    Article  Google Scholar 

  4. N. Singh, U. Schwingenschlogl, Chem. Phys. Lett. 508, 29–32 (2011)

    Article  Google Scholar 

  5. A. Guechi, A. Merabet, M. Chegaar, A. Bouhemadou, N. Guechi, J. Alloys Compd. 623, 219–228 (2015)

    Article  Google Scholar 

  6. S.I. Johnson, A. Zevalkink, G.J. Snyder, J. Mater. Chem. A 1, 4244 (2013)

    Article  Google Scholar 

  7. A. Zevalkink, J. Swallow, G.J. Snyder, Dalton Trans. 42, 9713 (2013)

    Article  Google Scholar 

  8. A. Zevalkink, G.S. Pomrehn, S. Johnson, J. Swallow, Z.M. Gibbs, G.J. Snyder, Chem. Mater. 24, 2091 (2012)

    Article  Google Scholar 

  9. A. Zevalkink, E.S. Toberer, T. Bleith, E. Flage-Larsen, G.J. Snyder, J. Appl. Phys. 110, 013721 (2011)

    Article  Google Scholar 

  10. J. Wang, S.Q. Xia, X.-T. Tao, Inorg. Chem. 51, 5771 (2012)

    Article  Google Scholar 

  11. Y.L. Yan, Y.X. Wang, J. Mater. Chem. 21, 12497 (2011)

    Article  Google Scholar 

  12. H. Guo, T. Yang, P. Tao, Y. Wang, Z. Zhang, J. Appl. Phys. 113, 013709 (2013)

    Article  Google Scholar 

  13. L. Wu, Y. Sun, G.Z. Zhang, C.X. Gao, Mater. Lett. 129, 68 (2014)

    Article  Google Scholar 

  14. T. Thonhauser, T.J. Scheidemantel, J.O. Sofo, J.V. Badding, G.D. Mahan, Phys. Rev. B 68, 085201 (2003)

    Article  Google Scholar 

  15. S.M. Souza, C.M. Poffo, D.M. Triches, J.C. de Lima, T.A. Grandi, A. Polian, M. Gauthier, Phys. B 407, 3781 (2012)

    Article  Google Scholar 

  16. J. Zhao, H. Liu, L. Ehm, Z. Chen, S. Sinogeikin, Y. Zhao, G. Gu, Inorg. Chem. 50, 11291 (2011)

    Article  Google Scholar 

  17. Y. Ma, G. Liu, P. Zhu, H. Wang, X. Wang, Q. Cui, J. Liu, Y. Ma, J. Phys. 24, 475403 (2012)

    Google Scholar 

  18. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, in Wien2k: an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (Vienna University of Technology, Austria, 2001)

    Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  20. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  21. H.A. Rahnamaye Aliabad, Z. Mojarradi, B.G. Yalcin, J. Mater. Sci. 27, 4887 (2016)

    Google Scholar 

  22. S. Bagci, B.G. Yalcin, H.A. Rahnamaye Aliabad, S. Dumana, B. Salmankurt, RSC Adv. 6, 59527 (2016)

    Article  Google Scholar 

  23. K. Georg, H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2006) 67.

    Article  Google Scholar 

  24. H.A. Rahnamaye Aliabad, M. Kheirabadi, Phys. B 433, 157 (2014)

    Article  Google Scholar 

  25. H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, A.M. Saeed, Comput. Mater. Sci. 65, 509 (2012)

    Article  Google Scholar 

  26. A. Zevalkink, E.S. Toberer, W.G. Zeier, E. Flage-Larsen, G.J. Snyder, Energy Environ. Sci. 4, 510 (2011)

    Article  Google Scholar 

  27. F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244e247 (1944)

    Article  Google Scholar 

  28. H.A. Rahnamaye Aliabad, M. Fathabadi, I. Ahmad, Int. J. Quantum Chem. 113, 865 (2013)

    Article  Google Scholar 

  29. D.R. Penn, Phys. Rev. 128, 2093 (1962)

    Article  Google Scholar 

  30. H.A. Rahnamaye Aliabad, I. Ahmad, Phys. B 407, 368 (2012)

    Article  Google Scholar 

  31. A. Kolezynski, W. Szczypka, J. Alloys Compd. 691, 299 (2017)

    Article  Google Scholar 

  32. E.S. Toberer, A. Zevalkink, N. Crisosto, G.J. Snyder, Adv. Funct. Mater. 20, 4375 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. Blaha (Vienna University of Technology, Austria) for his technical assistance in using the WIEN2k code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahnamaye Aliabad, H.A., Yalcin, B.G. Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect. J Mater Sci: Mater Electron 28, 14954–14964 (2017). https://doi.org/10.1007/s10854-017-7368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7368-6

Navigation