Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect

Article
  • 87 Downloads

Abstract

The structural, optoelectronic and thermoelectric properties of Ca5Al2Sb6 under applied external pressures have been studied using the full potential linear augmented plane wave method. WIEN2k code is used with considering the generalized gradient approximation (GGA), modified Becke–Johnson (MBJ) and modified Becke–Johnson + spin orbit (mBJ + SO) functionals based on density functional theory (DFT). From electronic results, the size of the band gap decreases with increasing pressure and the nature of the band gap shift from direct to the indirect. In high pressure (>35.7 GPa by mBJ + SO), the band gap is also completely disappeared and the nature of compound is changed to the metallic. The calculated anisotropic optical properties such as the static dielectric function, increase with decreasing the size of band gap and increasing of pressure. As a novel result, the thermoelectric performance of n-type and p-type doping of Ca5Al2Sb6 is related to the value of pressure. According to the thermoelectric results, the n-type one has the highest ZT in comparison with the p-type Ca5Al2Sb6 material.

Notes

Acknowledgements

The authors are grateful to P. Blaha (Vienna University of Technology, Austria) for his technical assistance in using the WIEN2k code.

References

  1. 1.
    D.B. Luo, Y.X. Wang, Y.L. Yan, G. Yang, J.M. Yang, J. Mater. Chem. A 2, 15159 (2014)CrossRefGoogle Scholar
  2. 2.
    G. Yang, H. Cui, D. Ma, C. He, J. Appl. Phys. 116, 223709 (2014)CrossRefGoogle Scholar
  3. 3.
    U. Subbarao, S. Sarkar, V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, S.C. Peter, Inorg. Chem. 52, 13631 (2013)CrossRefGoogle Scholar
  4. 4.
    N. Singh, U. Schwingenschlogl, Chem. Phys. Lett. 508, 29–32 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Guechi, A. Merabet, M. Chegaar, A. Bouhemadou, N. Guechi, J. Alloys Compd. 623, 219–228 (2015)CrossRefGoogle Scholar
  6. 6.
    S.I. Johnson, A. Zevalkink, G.J. Snyder, J. Mater. Chem. A 1, 4244 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Zevalkink, J. Swallow, G.J. Snyder, Dalton Trans. 42, 9713 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Zevalkink, G.S. Pomrehn, S. Johnson, J. Swallow, Z.M. Gibbs, G.J. Snyder, Chem. Mater. 24, 2091 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Zevalkink, E.S. Toberer, T. Bleith, E. Flage-Larsen, G.J. Snyder, J. Appl. Phys. 110, 013721 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Wang, S.Q. Xia, X.-T. Tao, Inorg. Chem. 51, 5771 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.L. Yan, Y.X. Wang, J. Mater. Chem. 21, 12497 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Guo, T. Yang, P. Tao, Y. Wang, Z. Zhang, J. Appl. Phys. 113, 013709 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Wu, Y. Sun, G.Z. Zhang, C.X. Gao, Mater. Lett. 129, 68 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Thonhauser, T.J. Scheidemantel, J.O. Sofo, J.V. Badding, G.D. Mahan, Phys. Rev. B 68, 085201 (2003)CrossRefGoogle Scholar
  15. 15.
    S.M. Souza, C.M. Poffo, D.M. Triches, J.C. de Lima, T.A. Grandi, A. Polian, M. Gauthier, Phys. B 407, 3781 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Zhao, H. Liu, L. Ehm, Z. Chen, S. Sinogeikin, Y. Zhao, G. Gu, Inorg. Chem. 50, 11291 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Ma, G. Liu, P. Zhu, H. Wang, X. Wang, Q. Cui, J. Liu, Y. Ma, J. Phys. 24, 475403 (2012)Google Scholar
  18. 18.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, in Wien2k: an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (Vienna University of Technology, Austria, 2001)Google Scholar
  19. 19.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  20. 20.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  21. 21.
    H.A. Rahnamaye Aliabad, Z. Mojarradi, B.G. Yalcin, J. Mater. Sci. 27, 4887 (2016)Google Scholar
  22. 22.
    S. Bagci, B.G. Yalcin, H.A. Rahnamaye Aliabad, S. Dumana, B. Salmankurt, RSC Adv. 6, 59527 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Georg, H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2006) 67.CrossRefGoogle Scholar
  24. 24.
    H.A. Rahnamaye Aliabad, M. Kheirabadi, Phys. B 433, 157 (2014)CrossRefGoogle Scholar
  25. 25.
    H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, A.M. Saeed, Comput. Mater. Sci. 65, 509 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Zevalkink, E.S. Toberer, W.G. Zeier, E. Flage-Larsen, G.J. Snyder, Energy Environ. Sci. 4, 510 (2011)CrossRefGoogle Scholar
  27. 27.
    F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244e247 (1944)CrossRefGoogle Scholar
  28. 28.
    H.A. Rahnamaye Aliabad, M. Fathabadi, I. Ahmad, Int. J. Quantum Chem. 113, 865 (2013)CrossRefGoogle Scholar
  29. 29.
    D.R. Penn, Phys. Rev. 128, 2093 (1962)CrossRefGoogle Scholar
  30. 30.
    H.A. Rahnamaye Aliabad, I. Ahmad, Phys. B 407, 368 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Kolezynski, W. Szczypka, J. Alloys Compd. 691, 299 (2017)CrossRefGoogle Scholar
  32. 32.
    E.S. Toberer, A. Zevalkink, N. Crisosto, G.J. Snyder, Adv. Funct. Mater. 20, 4375 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran
  2. 2.Independent ResearcherSerdivanTurkey

Personalised recommendations