Skip to main content
Log in

Engel-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal chalcogenide semiconductors have a significant role in the development of materials for energy and nanotechnology applications. First principle calculations were applied on CsAgGa2Se4 to investigate its optoelectronic structure and bonding characteristics, using the full-potential linear augmented plane wave method within the framework of generalized gradient approximations (GGA) and Engel-Vosko GGA functionals (EV-GGA). The band structure from EV-GGA shows that the valence band maximum and conduction band minimum are situated at Γ with a band gap value of 2.15 eV. A mixture of orbitals from Ag 4p 6/4d 10, Se 3d 10, Ga 4p 1, Se 4p 4 , and Ga 4s 2 states have a primary role to lead to a semiconducting character of the present chalcogenide. The charge density iso-surface shows a strong covalent bonding between Ag-Se and Ga-Se atoms. The imaginary part of dielectric constant reveals that the threshold (first optical critical point) energy of dielectric function occurs 2.15 eV. It is obvious that with a direct large band gap and large absorption coefficient, CsAgGa2Se4 might be considered a potential material for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mei, W. Yin, K. Feng, L. Bai, Z. Lin, J. Yao, and Y. Wu, J. Solid State Chem. 186, 54 (2012).

    Article  Google Scholar 

  2. S. Azam, S.A. Khan, and S. Goumri-Said, Mater. Res. Bull. 70, 847 (2015).

    Article  Google Scholar 

  3. S. Azam, S.A. Khan, and S. Goumri-Said, Mater. Sci. Semicond. Process. 39, 606 (2015).

    Article  Google Scholar 

  4. H. Li, C.D. Malliakas, Z. Liu, J.A. Peters, H. Jin, C.D. Morris, L. Zhao, B.W. Wessels, A.J. Freeman, and M.G. Kanatzidis, Chem. Mater. 24, 4434 (2012).

    Article  Google Scholar 

  5. W. Khan and S. Goumri-Said, RSC Adv. 5, 9455 (2015).

    Article  Google Scholar 

  6. W. Khan, S. Azam, F.A. Shah, and S. Goumri-Said, Solid State Sci. 48, 244 (2015).

    Article  Google Scholar 

  7. W. Boncher, H. Dalafu, N. Rosa, and S. Stoll, Coord. Chem. Rev. 289, 279 (2015).

    Article  Google Scholar 

  8. C.D. Brunetta, J.A. Brant, K.A. Rosmus, K.M. Henline, E. Karey, J.H. MacNeil, and J.A. Aitken, J. Alloys Compd. 574, 495 (2013).

    Article  Google Scholar 

  9. M.G. Brik, I.V. Kityk, O.V. Parasyuk, and G.L. Myronchuk, J. Phys. 25, 505802 (2013).

    Google Scholar 

  10. Y. Kogut, A. Fedorchuk, O. Zhbankov, Y. Romanyuk, I. Kityk, L. Piskach, and O. Parasyuk, J. Alloys Compd. 509, 4264–4267 (2011).

    Article  Google Scholar 

  11. G.P. Gorgut, A.O. Fedorchuk, V.P. Sachanyuk, I.D. Olekseyuk, and O.V. Parasyuk, J. Cryst. Growth 324, 212 (2011).

    Article  Google Scholar 

  12. G. Lakshminarayana, I.V. Kityk, and M. Piasecki, J. Cryst. Growth 354, 142 (2012).

    Article  Google Scholar 

  13. G.E. Davydyuk, G.I. Myronchuk, S.P. Danylchuk, V.V. Bozhko, and O.V. Parasyuk, Opt. Mater. 33, 1302 (2011).

    Article  Google Scholar 

  14. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 220, 567 (2005).

    Google Scholar 

  15. X. Wu, E.J. Walter, A.M. Rappe, R. Car, and A. Selloni, Phys. Rev. B 80, 115201 (2009).

    Article  Google Scholar 

  16. P. Hohenberg and W. Kohn, Phys. Rev. B 864, 136 (1964).

    Google Scholar 

  17. W. Kohn and L.J. Sham, Phys. Rev. A 1133, 140 (1965).

    Google Scholar 

  18. K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).

    Article  Google Scholar 

  19. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, J. Appl. Phys. 114, 034901 (2013).

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  21. V. Panchal, D. Errandonea, A. Segura, P. Rodriguez- Hernandez, and A. Munoz, J. Appl. Phys. 110, 043723 (2011).

    Article  Google Scholar 

  22. E. Engel and S.H. Vosko, Phys. Rev. B 50, 10498 (1994).

    Article  Google Scholar 

  23. R.L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).

    Article  Google Scholar 

  24. R.H. Bube, Photovoltaic Materials, Vol. 1 (London: Imperial College Press, 1998), pp. 1–33.

    Google Scholar 

  25. S. Azam and S. Ayaz Khan, Mater. Sci. Semicond. Process. 34, 250 (2015).

    Article  Google Scholar 

  26. S. Azam, S. Ayaz Khan, W. Khan, S. Muhammad, H. Udin, G. Murtaza, R. Khenata, F.A. Shah, J. Minar, and W.K. Ahmed, J. Alloys Compd. 644, 91 (2015).

    Article  Google Scholar 

  27. S. Azam, S.A. Khan, and S. Goumri-Said, J. Solid State Chem. 229, 260 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

The work of two first authors (SA and SAK) was developed within the CENTEM Project, Reg. No. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI Program and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Programme I. MetaCentrum (LM2010005) and CERIT-SC (CZ.1.05/3.2.00/08.0144) infrastructures. Also this work is supported by Project COST CZ LD15147 of the Ministry of Education, Youth and Sports. In addition we would like to acknowledge the EU-COST action MP1306 (EUspec).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souraya Goumri-Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, S., Khan, S.A. & Goumri-Said, S. Engel-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4 . J. Electron. Mater. 45, 746–754 (2016). https://doi.org/10.1007/s11664-015-4192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4192-8

Keywords

Navigation