Skip to main content
Log in

CdS modified Cu2O octahedral nano-heterojunction and its photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The p–n heterojunction of Cu2O/CdS have been prepared by a simple route of co-precipitation method. The results of SEM, TEM, XRD indicate that the surfaces of polyhedron Cu2O with different morphology are decorated by nanoparticle CdS. Compared with other structures under visible light, the Cu2O octahedra/CdS composites exhibit the highest photocatalytic property, which could be ascribed to that the unique heterojunction structure of the Cu2O/CdS could improve the photon-generated carrier separating and the Cu2O octahedral expose much more active surface than Cu2O cube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Sol. Energy 80, 715–722 (2006)

    Article  Google Scholar 

  2. H. Shi, K. Yu, F. Sun, Z.Q. Zhu, CrystEngComm 141, 278–285 (2012)

    Article  Google Scholar 

  3. J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, Nano Lett. 11, 4774–4779 (2011)

    Article  Google Scholar 

  4. P. Lin, X. Chen, X.Q. Yan, Z. Zhang, H.G. Yuan, P.F. Li, Y.G. Zhao, Y. Zhang, Nano Res. 7, 860–868 (2014)

    Article  Google Scholar 

  5. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Res. Appl. 16, 235–239 (2008)

    Google Scholar 

  6. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc 130, 1124–1125 (2008)

    Article  Google Scholar 

  7. T. Minami, T. Miyata, K. Ihara, Y. Minamino, S.T. Tsukada, Thin Solid Films 494, 47–52 (2006)

    Article  Google Scholar 

  8. Y.B. Liu, H.B. Zhou, J.H. Li, H.C. Chen, D. Li, B.X. Zhou, W.M. Cai, Nano-Micro Lett. 2, 277–284 (2010)

    Article  Google Scholar 

  9. S. Zhang, Q.Y. Chen, Y.H. Wang, L.J. Guo, Int. J Hydrogen Energ 37(17), 13030–13036 (2012)

    Article  Google Scholar 

  10. B. Sun, Y.Z. Hao, F. Guo, Y.H. Cao, Y.H. Zhang, Y.P. Li, D.S. Xu, J Phy. Chem. C 116, 1395–1400 (2012)

    Article  Google Scholar 

  11. K. Cheng, Q.Q. Li, J. Meng, X. Han, Y.Q. Wu, S.J. Wang, L. Qian, Z.L. Du, Sol. Energy Mat. Sol. C 116, 120–125 (2013)

    Article  Google Scholar 

  12. S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrochim. Acta 53, 2226–2231 (2008)

    Article  Google Scholar 

  13. L.D. Wang, Y.X. Zhao, G.H. Wang, H. Zhou, C. Geng, C.Q. Wu, Energ. Mat. Sol. C 130, 387–392 (2014)

    Article  Google Scholar 

  14. L. Kosyachenko, G. Lashkarev, E. Grushko, A. Ievtushenko, V. Sklyarchuka, X. Mathewc, P.D. Paulson, Acta Phys. Pol. A 116, 862–864 (2009)

    Article  Google Scholar 

  15. D.F. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, L.W. Estrada, Thin Solid Films 373, 137–140 (2000)

    Article  Google Scholar 

  16. Z.H. Wang, S.P. Zhao, S.Y. Zhu, Y.L. Sun, M. Fang CrystEngComm 13, 2262–2267 (2011)

    Article  Google Scholar 

  17. M. Luo, Y. Liu, J.C. Hu, H. Liu, J.L. Li, ACS Appl. Mater. Interfaces 4, 1813–1821 (2012)

    Article  Google Scholar 

  18. X.S. Jiang, Z.W. Li, Q.B. Lin, K.X. Dong, Y.Y. Zhang, Z.Q. Sun, J. Mater. Sci. El 27, 8856–8861 (2016)

    Article  Google Scholar 

  19. M. Izaki, T. Ohta, M. Kondo, T. Takahashi, F.B. Mohamad, M. Zamzuri, J. Sasano, T. Shinagawa, T. Pauporte, ACS Appl. Mater. Interf. 6, 13461–13469 (2014)

    Article  Google Scholar 

  20. J.H. Zhong, G.R. Li, Z.L. Wang, Y.N. Ou, Y.X. Tong, Inorg. Chem. 50, 757–763 (2011)

    Article  Google Scholar 

  21. S. Hacialioglu, F. Meng, S. Jin, Chem. Commun. 48, 1174–1176 (2012)

    Article  Google Scholar 

  22. Y.H. Liang, L. Shang, T. Bian, C. Zhou, D.H. Zhang, H.J. Yu, H.T. Xu, Z. Shi, T.R. Zhang, L.Z. Wu, C.H. Tung, CrystEngComm 14, 4431–4436 (2012)

    Article  Google Scholar 

  23. D.J. Wang, D.S. Li, L. Guo, F. Fu, Z.P. Zhang, Q.T. Wei, J Phys. Chem. C 113, 5984–5990 (2009)

    Article  Google Scholar 

  24. C.L. Li, J.A. Yuan, B.Y. Han, W.F. Shangguan, Int. J. Hydrogen Energy 36, 4271–4279 (2011)

    Article  Google Scholar 

  25. Y.H. Lee, S.H. Im, J.H. Rhee, J.H. Lee, S. Il Seok, ACS Appl. Mater. Interf. 2, 1648–1652 (2010)

    Article  Google Scholar 

  26. H.Z. Bao, W.H. Zhang, D.L. Shang, Q. Hua, Y.S. Ma, Z.Q. Jiang, J.L. Yang, W.X. Huang, J. Phys. Chem. C 114, 6676–6680 (2010)

    Article  Google Scholar 

  27. L.L. Sun, X.L. Wu, M. Meng, X.B. Zhu, P.K. Chu, J. Phys. Chem. C 118, 28063–28068 (2014)

    Article  Google Scholar 

  28. A.L. Li, P.W. Li, J. Hu, W.D. Zhang, J. Mater. Sci. El 26, 5071–5077 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 51672249, 51603187 and 91122022), Zhejiang Provincial Natural Science Foundation of China (No. LQ17F040004 and LY15E030011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaorong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Pan, J., Wang, S. et al. CdS modified Cu2O octahedral nano-heterojunction and its photocatalytic application. J Mater Sci: Mater Electron 28, 14079–14084 (2017). https://doi.org/10.1007/s10854-017-7259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7259-x

Navigation