Skip to main content
Log in

MEMS based hydrogen sensor with the highly porous Au-CNT film as a sensing material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well dispersed gold nanoparticles were deposited on carbon nanotubes (CNTs) by direct current (DC) sputtering followed by dealloying method, forming highly porous thin films using nitric acid (HNO3). The structure and morphology of the thin film were characterized using Fourier transmission-infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), Raman spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). FE-SEM and AFM confirmed that gold nanoparticles were homogenously dispersed on the CNT matrix which is like a highly porous film. The XRD patterns revealed the existence of metallic gold particles on the disordered graphitic phases. FTIR and Raman spectroscopy confirmed the interaction between the gold nanoparticles and CNT matrix. A microelectromechanical systems based micro hydrogen gas sensor was developed from the highly porous thin film of Au-CNT. The micro heater and sensing electrode were fabricated to have a co-planar structure with a Pt layer. The designed micro platform showed low power consumption of 72 mW at a 2.5 V heater voltage and an operating temperature of 300 °C. The dimensions of the micro hydrogen gas sensor platform and sensing area were approximately 1.8 mm × 1.8 mm and 0.6 mm × 0.6 mm, respectively. The maximum gas sensitivity measured at 3.0 V was found to be 2.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B 157(2), 329–352 (2011)

    Article  Google Scholar 

  2. L. Schlapbach, A. Zuttel, Nature 414, 353–358 (2001)

    Article  Google Scholar 

  3. S. Zhuiykov, Int. J. Hydrogen Energy 21, 149–759 (1996)

    Article  Google Scholar 

  4. H. Görgün, M. Arcak, S. Varigonda, S.A. Bortoff, Int. J. Hydrogen Energy 30, 447–457 (2005)

    Article  Google Scholar 

  5. W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, N. Murayama, Sens. Actuators B 108, 455–460 (2005)

    Article  Google Scholar 

  6. Z. Liu, Q. Xue, C. Ling, Z. Yan, J. Zheng, Comput. Mater. Sci. 68, 121–126 (2013)

    Article  Google Scholar 

  7. C. Ling, Q. Xue, Z. Han, Z. Zhang, Y. Du, Y. Liu, Z. Yan, Sens. Actuators B 205, 255–260 (2014)

    Article  Google Scholar 

  8. C. Ling, Q. Xue, Z. Han, H. Lu, F. Xia, Z. Yan, L. Deng, Sens. Actuators B 227, 438–447 (2016)

    Article  Google Scholar 

  9. Afridi M., Hefner A., Berning D., Ellenwood C., Varma A., Jacob B., Semancik, S., Solid-State Electron. 48(10), 1777–1781 (2004)

    Article  Google Scholar 

  10. A. Mahdavifar, M. Navaei, P.J. Hesketh, J.D. Dimandja, J.R. Stetter, G. McMurray, ECS J. Solid State Sci. Technol. 4, S1–S5 (2015)

    Article  Google Scholar 

  11. Chuang W.C., Lee H.L., Chang P.Z., Hu Y.C., Sensors 10(6), 6149–6171 (2010)

    Article  Google Scholar 

  12. A.Z. Sadek, C. Zhang, Z. Hu, J.G. Partridge, D.G. McCulloch, W. Wlodarski, K. Kalantar-zadeh, J. Phys. Chem. C 114, 238–242 (2010)

    Article  Google Scholar 

  13. M. Penza, P. Aversa, G. Cassano, W. Wlodarski, K. Kalantar-Zadeh, Sens. Actuators B 127, 168–178 (2007)

    Article  Google Scholar 

  14. Philip B., Abraham J.K., Chandrasekha, A., Varadan, V.K., Smart Mater. Struct. 12(6), 935 (2003)

    Article  Google Scholar 

  15. A. Goldoni, L. Petaccia, S. Lizzit, R. Larciprete J. Phys. Condens. Matter. 22, 013001 (2010)

    Article  Google Scholar 

  16. I. Sayago, H. Santos, M.C. Horrillo, M. Aleixandre, M.J. Fernández, E. Terrado, I. Tacchini, R. Aroz, W.K. Maser, A.M. Benito, M.T. Martínez, Talanta 77, 758–764 (2008)

    Article  Google Scholar 

  17. K.Y. Jiang, A. Eitan, L.S. Schadler, P.M. Ajayan, R.W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones, Nano Lett. 3, 275–277 (2003)

    Article  Google Scholar 

  18. P. Pannopar, P. Khongpracha, M. Probst, J.J. Limtrakul, Mol. Graphics Modell. 28, 62–69 (2009)

    Article  Google Scholar 

  19. R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, J. Mol. Struct. (THEOCHEM) 806, 93–97 (2007)

    Article  Google Scholar 

  20. A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-C.P. Gabriel, J. Phys. Chem. B 110, 21014–21020 (2006)

    Article  Google Scholar 

  21. C. Bittencourt, A. Felten, E. Espinosa, R. Ionescu, E. Llobet, X. Corteig, J. Pireaux, Sens. Actuators B 115, 33–41 (2006)

    Article  Google Scholar 

  22. E.H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. Pireaux, E. Llobet, Thin Solid Films 515, 8322–8327 (2007)

    Article  Google Scholar 

  23. Y. Zhang, N. Franklin, R. Chen, H. Dai, Chem. Phys. Lett. 331, 35–41 (2000)

    Article  Google Scholar 

  24. A.J. Forty, Nature 282, 597–598 (1979)

    Article  Google Scholar 

  25. A.J. Forty, Gold Bull. 14, 25–35 (1981)

    Article  Google Scholar 

  26. J. Erlebacher, M.J. Aziz; A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450–453 (2001)

    Article  Google Scholar 

  27. A.A. El Mel, F. Boukli-Hacene, L. Molina-Luna, N. Bouts, A. Chauvin, D. Thiry, E. Gautron, N. Gautier, P.Y. Tessier, ACS Appl. Mater. Interfaces 7(4), 2310–2321 (2015)

    Article  Google Scholar 

  28. Z. Yan, Y. Wu, J. Di, Beilstein J. Nanotechnol. 6(1), 1362–1368 (2015)

    Article  Google Scholar 

  29. J.H. Yoon, B.J. Kim, J.S. Kim, Mater. Chem. Phys. 133(2), 987–991 (2012)

    Article  Google Scholar 

  30. M. Angiola, C. Rutherglen, K. Galatsis, A. Martucci, Sens. Actuators 236, 1098–1103 (2016)

    Article  Google Scholar 

  31. V. Švorčík, Z. Kolská, O. Kvítek, J. Siegel, A. Řezníčková, P. Řezanka, K. Záruba, Nanoscale Res. Lett. 6(1), 607 (2011)

    Article  Google Scholar 

  32. B.S. Chiou, S.A. Khan, Macromolecules 30, 7322–7328 (1997)

    Article  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Article  Google Scholar 

  34. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon 49(8), 2581 (2011)

    Article  Google Scholar 

  35. S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi, Chem. Phys. Lett. 402, 422 (2005)

    Article  Google Scholar 

  36. Okamoto H., T.B. Massalski, Bull Alloy Phase Diagr. 6(3), 229–235 (1985)

    Article  Google Scholar 

  37. I. Sayago, E. Terrado, M. Aleixandre, M.C. Horrillo, M.J. Fernandez, J. Lozano, E. Lafuente, W.K. Maser, A.M. Benito, M.T. Martinez, J. Gutierrez, E. Munoz, Sens. Actuators B 122, 75–80 (2007)

    Article  Google Scholar 

  38. J. Kong, M.G. Chapline, H.J. Dai, Adv. Mater. 13, 1384–1386 (2001)

    Article  Google Scholar 

  39. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622–625 (2000)

    Article  Google Scholar 

  40. M.K. Kumar, S. Ramaprabhu, J. Phys. Chem. B 110, 11291–11298 (2006)

    Article  Google Scholar 

  41. Z. Zanolli, R. Leghrib, A. Felten, J.J. Pireaux, E. Llobet, J.C. Charlier, ACS nano 5(6), 4592–4599 (2011)

    Article  Google Scholar 

  42. A. Thamri, H. Baccar, C. Struzzi, C. Bittencourt, A. Abdelghani, E. Llobet, Sci. Rep. 6, 35130 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP; No. 2015-R1A2A201005790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Yadav, H. & Kim, JS. MEMS based hydrogen sensor with the highly porous Au-CNT film as a sensing material. J Mater Sci: Mater Electron 28, 13540–13547 (2017). https://doi.org/10.1007/s10854-017-7193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7193-y

Navigation