Skip to main content
Log in

Impedance and modulus spectroscopy studies of cobalt substituted strontium hexaferrite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of strontium ferrites SrCoxFe12−xO19 (SFCO) with the chemical composition x = 0.0, 0.1, 0.2 & 0.3 have been synthesized by sol–gel method. The preliminary structural studies were carried out by X-ray diffraction technique, which shows the formation of polycrystalline sample with M-type structure and hexagonal symmetry of SFCO system. X-ray diffraction patterns confirms that no phase change is observed by the substitution of cobalt in SFCO up to x = 0.3. Using complex impedance spectroscopy technique, the complex impedance (Z*) and modulus (M*) properties of the materials were studied in the frequency range 20 Hz–40 MHz and temperature range 273–573 K. Impedance analysis indicates the presence of bulk resistive (grain) contributions which are found to decrease with increase in temperature showing the negative temperature coefficient of resistance (NTCR) behaviour indicating a typical semiconductor property of the ferrite material. In complex modulus spectrum, the grains have a dominant effect and also support their NTCR type behaviour. Both the complex impedance and complex modulus plots confirm the presence of non-Debye type of relaxation in the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.B. Yang, Y.Y. Fu, A. Xia, K. Zhang, Z. Wu, J. Alloys Compd. 518, 6–10 (2012)

    Article  Google Scholar 

  2. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, J. Carbon 50, 2202–2208 (2012)

    Article  Google Scholar 

  3. S.H. Hosseini, S.H. Mohseni, A. Asadnia, H. Kerdari, J. Alloys Compd. 509, 4682–4687 (2011)

    Article  Google Scholar 

  4. W. Chen, J. Zhen, Y. Li, J. Alloys Compd. 513, 420–424 (2012)

    Article  Google Scholar 

  5. Z. Ma, Y. Zhang, C.T. Cao, J. Yuan, Q.F. Liu, J.B. Wang, Physica B 406, 4620–4624 (2011)

    Article  Google Scholar 

  6. R. Han, X.H. Han, L. Qiao, T. Wang, F.H. Li, Mater. Chem. Phys. 128, 317–322 (2011)

    Article  Google Scholar 

  7. G. Liu, L.Y. Wang, G.M. Chen, S.C. Hua, C.Q. Ge, H. Zhang, R.B. Wu, J. Alloys Compd. 514, 183–188 (2012)

    Article  Google Scholar 

  8. L. Vovchenko, L. Matzui, V. Oliynyk, V. Launetz, F. Le Normand, J. Phys. E 44, 928–931 (2011)

    Article  Google Scholar 

  9. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Synth. Met. 161, 1522–1526 (2011)

    Article  Google Scholar 

  10. A. Maqsood, K. Khan, J. Alloys Compd. 509, 3393–3397 (2011)

    Article  Google Scholar 

  11. K. Shimba, N. Tezuka, S. Sugimoto, Mater. Sci. Eng. B 177, 251–256 (2012)

    Article  Google Scholar 

  12. Y.B. Feng, T. Qiu, J. Alloys Compd. 513, 455–459 (2012)

    Article  Google Scholar 

  13. Ashima, S. Sanghi, A. Agarwal, Reetu, J. Alloys Compd. 513, 436–444 (2012)

    Article  Google Scholar 

  14. M.K. Tehrani, A. Ghasemi, M. Moradi, R.S. Alam, J. Alloys Compd. 509, 8398–8400 (2011)

    Article  Google Scholar 

  15. C.A. Stergiou, G. Litsardakis, J. Alloys Compd. 509, 6609–6615 (2011)

    Article  Google Scholar 

  16. M.J. Iqbal, S. Farooq, Mater. Res. Bull. 46, 662–667 (2011)

    Article  Google Scholar 

  17. X.J. Gao, Y.C. Du, X.R. Liu, P. Xu, X.J. Han, Mater. Res. Bull. 46, 643–648 (2011)

    Article  Google Scholar 

  18. W. Onreabroy, K. Papato, G. Rujijanagul, K. Pengpat, T. Tunkasiri, Ceram. Int. 38S, S415–S419 (2012)

    Article  Google Scholar 

  19. C. Serletis, G. Litsardakis, E.K. Polychroniadis, K.G. Efthimiadis, J. Alloys Compd. 521, 101–105 (2012)

    Article  Google Scholar 

  20. C.J. Li, B. Wang, J.N. Wang, J. Magn. Magn. Mater. 324, 1305–1311 (2012)

    Article  Google Scholar 

  21. P.G. Bercoff, C. Herme, S.E. Jacobo, J. Magn. Magn. Mater. 321, 2245–2250 (2009).

    Article  Google Scholar 

  22. C.A. Herme, P.G. Bercoff, S.E. Jacobo, Physica B 407, 3102–3105 (2011)

    Article  Google Scholar 

  23. Y. Liu, M.G.B. Drew, Y. Liu, J.P. Wang, M.L. Zhang, J. Magn. Magn. Mater. 322, 3342–3345 (2010).

    Article  Google Scholar 

  24. J.C. Burtfoot, Ferroelectrics: An Introduction to the Physical Principles (Van Nostrand-Reinbold, London, 1967)

    Google Scholar 

  25. J. Molla, M. Gonzalez, R. Villa, A. Ibara, J. Appl. Phys. 85, 1727 (1999)

    Article  Google Scholar 

  26. E.J.W. Verwey, J.H. De Boer, Rec. Trans. Chim. Des.Pays.Bas 55, 531 (1936)

    Article  Google Scholar 

  27. K. Alamelu Mangai, M. Priya, M. Rathnakumari, P. Sureshkumar, J. Appl. Spectrosc. 81, 519–524 (2014)

    Article  Google Scholar 

  28. Q.Q. Fangb, H.W. Baob, D.M. Fangb, J.Z. Wangb, X.G. Lia, J. Magn. Magn. Mater. 278, 122 (2004)

    Article  Google Scholar 

  29. M.M. Hessien, M.M. Rashad, K. El-Barawy, J. Magn. Magn. Mater. 320, 336 (2008)

    Article  Google Scholar 

  30. X. Meng et al., RSC Adv. 6, 4946–4949 (2016)

    Article  Google Scholar 

  31. W. Zhao, P. Wei, H. Cheng, X. Tang, Q. Zhang, J. Am. Ceram. Soc. 90(7), 2095–2103 (2007)

    Article  Google Scholar 

  32. D.V. Ruikar, P.B. Kashid, S. Supugade, N. Pisal, V. Puri, Adv. Ceram. Sci. Eng. 2, 72–77 (2013)

    Google Scholar 

  33. J.R. MacDonald, Impedance Spectroscopy. (Wiley, New York, 1987)

    Google Scholar 

  34. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  Google Scholar 

  35. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  36. A.K. Behera, N.K. Mohanty, B. Behera, P. Nayak, Adv. Mater. Lett. 4(2), 141 (2013)

    Article  Google Scholar 

  37. Md.T. Rahman, C.V. Ramamna, J. Appl. Phys. 116, 164108 (2014)

    Article  Google Scholar 

  38. J. Lu, Ch.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)

    Article  Google Scholar 

  39. C. Leon, M.L. Lucia, J. Santamaria, J. Phys. B 55, 882 (1997)

    Google Scholar 

  40. R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998)

    Article  Google Scholar 

  41. S. Saha, T.P. Sinha, Phys. Rev. B 65(1–7), 1341 (2005)

    Google Scholar 

  42. K.P. Padmasree, D.D. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)

    Article  Google Scholar 

  43. S.T. Assar et al., J. Magn. Magn. Mater. 350, 12–18 (2014)

    Article  Google Scholar 

  44. S.A. Saafan, A.S. Seoud, R.E. El Shater, Physica B 365, 27–42 (2005)

    Article  Google Scholar 

  45. S.A. Saafan, Physica B 403, 2049–2058 (2008)

    Article  Google Scholar 

  46. A.K. Jonscher, Dielectric Relaxation in Solids. (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sureshkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamelu Mangai, K., Tamizh Selvi, K., Priya, M. et al. Impedance and modulus spectroscopy studies of cobalt substituted strontium hexaferrite ceramics. J Mater Sci: Mater Electron 28, 13445–13454 (2017). https://doi.org/10.1007/s10854-017-7183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7183-0

Navigation