Skip to main content
Log in

In situ investigation of magnetron sputtering plasma used for the deposition of multiferroic BiFeO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Somrani et al. (J. Mater. Sci. 26:3316–3323, 2015) have recently investigated the BiFeO3 (BFO) thin films growth by RF magnetron sputtering. The role of the processing parameters especially the oxygen flow, deposition temperature and annealing on the microstructure and optical properties of the deposited films has been extensively studied. In this work a detailed investigation of the plasma deposition dynamics of BFO films is presented. A plasma sampling mass spectrometer was inserted into the magnetron sputtering reactor to analyze the nature and energy distribution of each ion species impinging onto the substrate surface. It was find that at very low pressure (<5 mTorr), the ion energy spectra of the sputtered species showed a wide, bimodal distribution with a low energy component corresponding to the sheath potential and a much higher energy component arising from particles ejected from the target and only slightly thermalized in the gas phase. At higher pressure, all energy distributions became narrower due to a nearly complete thermalization. The Bi+-to-Fe+ ratio was also found to decrease with increasing pressure, going from about 4 at 3 to 1 at 30 mTorr. A similar feature was observed for the O+-to-O2 + ratio. The plasma dynamic results have been correlated to the Rutherford backscattering spectroscopy characterization of BFO thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  Google Scholar 

  2. M. Bibes, A. Barthélémy, Nat. Mater. 7, 425 (2008)

    Article  Google Scholar 

  3. S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, Y.J. Lee, Y.H. Chu, M.P. Cruz, Q. Zhan, T. Zhao, R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005)

    Article  Google Scholar 

  4. R.T. Smith, G.D. Achenbach, R. Gerson, W.J. James, J. Appl. Phys. 39, 70 (1968)

    Article  Google Scholar 

  5. J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315 (1971)

    Article  Google Scholar 

  6. L.W. Martin, Y.H. Chu, Q. Zhan, R. Ramesh, S.J. Han, S.X. Wang, M. Warusawithana, D.G. Schlom, Appl. Phys. Lett. 91, 172513 (2007)

    Article  Google Scholar 

  7. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)

    Article  Google Scholar 

  8. Y. Xu, M.R. Shen, Mater. Lett. 62, 3600 (2008)

    Article  Google Scholar 

  9. N. Somrani, A. Maaloul, H. Said, L. Stafford, M. Gaidi, J. Mater. Sci. 26, 3316–3323 (2015)

    Google Scholar 

  10. R.R. Das, D.M. Kim, S.H. Baek, F. Zavaliche, S.-Y. Yang, X. Ke, S.K. Streiffer, M.S. Rzchowski, R. Ramesh, C.B. Eom, Appl. Phys. Lett. 88, 242904 (2006)

    Article  Google Scholar 

  11. L. Stafford, O. Langlois, J. Margot, M. Gaidi, M. Chaker, Influence of the positive ion composition on the ion-assisted chemical etch yield of SrTiO3 films in Ar/SF6 plasmas. J. Vac. Sci. Technol. A 25(3), 425–431 (2007)

    Article  Google Scholar 

  12. L. Maaloul, L. Stafford, Measurements of sputtered neutrals and ions and investigation of their roles on the plasma properties during rf magnetron sputtering of Zn and ZnO targets. J. Vac. Sci. Technol. A 31, 061306 (2013)

    Article  Google Scholar 

  13. L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 15, 227 (1986)

    Article  Google Scholar 

  14. K.C. Park, K.B. Kim, I.J.M.M. Raaijmakers, K. Ngan, J. Appl. Phys. 80, 5674 (1996)

    Article  Google Scholar 

  15. T. Hori, M.D. Bowden, K. Uchino, K. Muraoka, M. Maeda, Measurements of electron temperature, electron density, and neutral density in a radio frequency inductively coupled plasma. J. Vac. Sci. Technol. A 14, 144 (1996)

    Article  Google Scholar 

  16. R.E. Somekh, The thermalization of energetic atoms during the sputtering process. J. Vac. Sci. Technol. A 2(3), 1285–1291 (1984)

    Article  Google Scholar 

  17. J.A. Valles-Abarca, A. Gras-Marti, Evolution towards thermalization, and diffusion, of sputtered particle fluxes: spatial profiles. J. Appl. Phys. 55(5), 1 (1984)

    Article  Google Scholar 

  18. N. Siadou, I. Panagiotopoulos, N. Kourkoumelis, T. Bakas, K. Brintakis, A. Lappa, Electric and magnetic properties of sputter deposited BiFeO3 films. Adv. Mater. Sci. Eng. 2013, (857465) (2013)

  19. M. Gaidi, A. Amassian, L. Stafford, M. Chaker, L. Martinu, J. Margotand, M. Kulishov, Correlation between optical and microstructural properties of SrTiO3 thin films grown on silicon by pulsed laser deposition. J. Mater. Res. 20(1), 68–74 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidi, M., Somrani, N. & Stafford, L. In situ investigation of magnetron sputtering plasma used for the deposition of multiferroic BiFeO3 thin films. J Mater Sci: Mater Electron 28, 15749–15753 (2017). https://doi.org/10.1007/s10854-017-7178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7178-x

Navigation