Skip to main content
Log in

Correlation of process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sputtering by particle bombardment: experiments and computer calculations from threshold to MeV energies, edited by R. Behrisch, W. Eckstein (Springer, Berlin, 2007)

  2. S.M. Rossnagel, J.R. Sites, J. Vac. Sci. Technol. A 2, 376 (1984)

    Article  ADS  Google Scholar 

  3. H. Demiryont, J.R. Sites, J. Vac. Sci. Technol. A 2, 1457 (1984)

    Article  ADS  Google Scholar 

  4. N. Ozer, H. Demiryont, J.H. Simmons, Appl. Opt. 30, 3661 (1991)

    Article  ADS  Google Scholar 

  5. M. Cevro, G. Carter, J. Phys. D: Appl. Phys. 28, 1962 (1995)

    Article  ADS  Google Scholar 

  6. P.A. Morris Hotsenpiller, G.A. Wilson, A. Roshko, J.B. Rothman, G.S. Rohrer, J. Cryst. Growth 166, 779 (1996)

    Article  ADS  Google Scholar 

  7. N. Albertinetti, H.T. Minden, Appl. Opt. 35, 5620 (1996)

    Article  ADS  Google Scholar 

  8. T. Aoki, K. Maki, Q. Tang, Y. Kumagai, S. Matsumoto, J. Vac. Sci. Technol. A 15, 2485 (1997)

    Article  ADS  Google Scholar 

  9. J. Pan, C. Leygraf, D. Thierry, A.M. Ektessabi, J. Biomed. Mater. Res. 35, 309 (1997)

    Article  Google Scholar 

  10. W.-H. Wang, S. Chao, Opt. Lett. 23, 1417 (1998)

    Article  ADS  Google Scholar 

  11. J.-C. Hsu and C.-C. Lee, Appl. Opt. 37, 1171 (1998)

    Article  ADS  Google Scholar 

  12. T. Uchitani, K. Maki, J. Vac. Sci. Technol. A 18, 2706 (2000)

    Article  ADS  Google Scholar 

  13. X.-Z. Ding, F.-M. Zhang, H.-M. Wang, L.-Z. Chen, X.-H. Liu, Thin Solid Films 368, 257 (2000)

    Article  ADS  Google Scholar 

  14. C.-C. Lee, J.-C. Hsu, D.-H. Wong, Appl. Surf. Sci. 171, 151 (2001)

    Article  ADS  Google Scholar 

  15. D. Osabe, H. Seyama, K. Maki, Appl. Opt. 41, 739 (2002)

    Article  ADS  Google Scholar 

  16. S. Ulucan, G. Aygun, L. Ozyuzer, M. Egilmez, R. Turan, J. Optoelectron. Adv. Mater. 7, 297 (2005)

    Google Scholar 

  17. C. Bundesmann, I.-M. Eichentopf, S. Mändl, H. Neumann, Thin Solid Films 516, 8604 (2008)

    Article  ADS  Google Scholar 

  18. H.-C. Chen, K.-S. Lee, C.-C. Lee, Appl. Opt. 47, C284 (2008)

    Article  Google Scholar 

  19. C.-H. Kao, J.-H. Tsai, S.-W. Yeh, H.-L. Huang, D. Gan, P. Shen, Jpn. J. Appl. Phys. Part 1 51, 045502 (2012)

    Google Scholar 

  20. C. Bundesmann, T. Lautenschläger, E. Thelander, D. Spemann, Nucl. Instrum. Methods Phys. Res. Sect. B 395, 17 (2017)

    Article  ADS  Google Scholar 

  21. C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, E. Thelander, M. Mensing, F. Frost, Appl. Surf. Sci. 421, 331 (2017)

    Article  ADS  Google Scholar 

  22. C. Bundesmann, R. Feder, J.W. Gerlach, H. Neumann, Thin Solid Films 551, 46 (2014)

    Article  ADS  Google Scholar 

  23. C. Bundesmann, R. Feder, R. Wunderlich, U. Teschner, M. Grundmann, H. Neumann, Thin Solid Films 589, 487 (2015)

    Article  ADS  Google Scholar 

  24. R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 316, 198 (2013)

    Article  ADS  Google Scholar 

  25. R. Feder, F. Frost, H. Neumann, C. Bundesmann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 317, 137 (2013)

    Article  ADS  Google Scholar 

  26. R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 334, 88 (2014)

    Article  ADS  Google Scholar 

  27. C. Bundesmann, R. Feder, T. Lautenschläger, H. Neumann, Contrib. Plasma Phys. 55, 737 (2015)

    Article  ADS  Google Scholar 

  28. T. Lautenschläger, R. Feder, H. Neumann, C. Rice, M. Schubert, C. Bundesmann, Nucl. Instrum. Methods Phys. Res. Sect. B385, 30 (2016)

    Article  ADS  Google Scholar 

  29. T. Lautenschläger, C. Bundesmann, J. Vac. Sci. Technol. A 35, 041001 (2017)

    Article  Google Scholar 

  30. M. Zeuner, F. Scholze, B. Dathe, H. Neumann, Surf. Coat. Technol. 142–144, 39 (2001)

    Article  Google Scholar 

  31. C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)

    Article  ADS  Google Scholar 

  32. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Article  ADS  Google Scholar 

  33. H. Fujiwara, Spectroscopic ellipsometry: principles and applications (John Wiley & Sons, Chichester, 2007)

  34. B. von Blanckenhagen, D. Tonova, J. Ullmann, Appl. Opt. 41, 3137 (2002)

    Article  ADS  Google Scholar 

  35. H. Águas, N. Popovici, L. Pereira, O. Conde, W.R. Branford, L.F. Cohen, E. Fortunato, R. Martins, Phys. Status Solidi A 205, 880 (2008)

    Article  ADS  Google Scholar 

  36. E. Langereis, S.B.S. Heil, H.C.M. Knoops, W. Keuning, M.C.M. van de Sanden, W.M.M. Kessels, J. Phys. D: Appl. Phys. 42, 073001 (2009)

    Article  ADS  Google Scholar 

  37. T. Giannakopoulou, N. Todorova, P. Osiceanu, A. Lagoyannis, T. Vaimakis, C. Trapalis, Thin Solid Films 517, 6694 (2009)

    Article  ADS  Google Scholar 

  38. A. Suchodolskis, A. Reza, V. Bukauskas, A. Mironas, A. Setkus, I. Simikiene, Mater. Sci. 20, 150 (2014)

    Google Scholar 

  39. K. Postava, M. Aoyama, T. Yamaguchi, H. Oda, Appl. Surf. Sci. 175–176, 276 (2001)

    Article  Google Scholar 

  40. S. Lee, J. Hong, Jpn. J. Appl. Phys. Part 1 39, 241 (2000)

    Article  Google Scholar 

  41. D. Spemann, T. Reinert, J. Vogt, T. Andrea, N. Barapatre, R. Feder, A.M. Jakob, N. Liebing, C. Meinecke, F. Menzel, M. Rothermel, T. Butz, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2175 (2011)

    Article  ADS  Google Scholar 

  42. A. Goehlich, N. Niemöller, H.F. Döbele, Phys. Rev. B 62, 9349 (2000)

    Article  ADS  Google Scholar 

  43. M. Stepanova, S.K. Dew, J. Vac. Sci. Technol. A 19, 2805 (2001)

    Article  ADS  Google Scholar 

  44. M. Stepanova, S.K. Dew, J. Appl. Phys. 92, 1699 (2002)

    Article  ADS  Google Scholar 

  45. M. Stepanova, S. Dew, Nucl. Instrum. Methods Phys. Res. Sect. B 215, 357 (2004)

    Article  ADS  Google Scholar 

  46. F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A. Schindler, J. Phys. Condens. Matter 21, 224026 (2009)

    Article  ADS  Google Scholar 

  47. H. Tang, F. Lévy, H. Berger, P.E. Schmid, Phys. Rev. B 52, 7771 (1995)

    Article  ADS  Google Scholar 

  48. N. Hosaka, T. Sekiya, C. Satoko, S. Kurita, J. Phys. Soc. Jpn. 66, 877 (1997)

    Article  ADS  Google Scholar 

  49. G.E. Jellison, L.A. Boatner, J.D. Budai, B.-S. Jeong, D.P. Norton, J. Appl. Phys. 93, 9537 (2003)

    Article  ADS  Google Scholar 

  50. L.-J. Meng, M. Andritschky, M.P. dos Santos, Thin Solid Films 223, 242 (1993)

    Article  ADS  Google Scholar 

  51. J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, V. Sammelselg, Thin Solid Films 305, 270 (1997)

    Article  ADS  Google Scholar 

  52. D. Mardare, P. Hones, Mater. Sci. Eng. B 68, 42 (1999)

    Article  Google Scholar 

  53. A. Bendavid, P.J. Martin, Å. Jamting, H. Takikawa, Thin Solid Films 355–356, 6 (1999)

    Article  Google Scholar 

  54. S. Lee, S.G. Rhee, S.G. Oh, J. Korean Phys. Soc. 34, 319 (1999)

    Google Scholar 

  55. H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P.J. Martin, Thin Solid Films 348, 145 (1999)

    Article  ADS  Google Scholar 

  56. B. Karunagaran, R.T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S.K. Narayandass, G. Mohan Rao, Cryst. Res. Technol. 38, 773 (2003)

    Article  Google Scholar 

  57. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, Appl. Surf. Sci. 212–213, 654 (2003)

    Article  Google Scholar 

  58. Y.R. Park, K.J. Kim, Thin Solid Films 484, 34 (2005)

    Article  ADS  Google Scholar 

  59. M. Zhang, G. Lin, C. Dong, L. Wen, Surf. Coat. Technol. 201, 7252 (2007)

    Article  Google Scholar 

  60. G.E. Jellison, F.A. Modine, L.A. Boatner, Opt. Lett. 22, 1808 (1997)

    Article  ADS  Google Scholar 

  61. M.H. Suhail, G. Mohan Rao, S. Mohan, J. Appl. Phys. 71, 1421 (1992)

    Article  ADS  Google Scholar 

  62. M. Vergöhl, N. Malkomes, T. Staedler, T. Matthée, U. Richter, Thin Solid Films 351, 42 (1999)

    Article  ADS  Google Scholar 

  63. M. Laube, F. Rauch, C. Ottermann, O. Anderson, K. Bange, Nucl. Instrum. Methods Phys. Res. Sect. B 113,288 (1996)

    Article  ADS  Google Scholar 

  64. C.R. Ottermann, K. Bange, Thin Solid Films 286, 32 (1996)

    Article  ADS  Google Scholar 

  65. Y. Leprince-Wang, K. Yu-Zhang, V. Nguyen Van, D. Souche, J. Rivory, Thin Solid Films 307, 38 (1997)

    Article  ADS  Google Scholar 

  66. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, Thin Solid Films 371, 218 (2000)

    Article  ADS  Google Scholar 

  67. F.A. Smidt, Int. Mater. Rev. 35, 61 (1990)

    Article  Google Scholar 

  68. S. Mohan, M. Ghanashyam Krishna, Vacuum 46, 645 (1995)

    Article  Google Scholar 

  69. J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder, A. Zmelty, Surf. Coat. Technol. 112, 261 (1999)

    Article  Google Scholar 

  70. A. Bendavid, P.J. Martin, H. Takikawa, Thin Solid Films 360, 241 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Bundesmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bundesmann, C., Lautenschläge, T., Spemann, D. et al. Correlation of process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target. Eur. Phys. J. B 90, 187 (2017). https://doi.org/10.1140/epjb/e2017-80326-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80326-x

Keywords

Navigation