Skip to main content
Log in

A study of microwave absorbing properties in Co–Gd doped M-type Ba–Sr hexaferrites prepared using ceramic method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

M-type Barium-Stronium hexaferrites with the chemical composition Ba0.5Sr0.5CoxGdxFe12−2xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared using a conventional ceramic method. X-ray diffraction (XRD) technique was used to explore the structure characterization and phase purity of the prepared compositions. The absorber testing device method was adopted for investigating the dependence of microwave absorption of ferrite compositions on substitution and thickness from 8.2 to 12.4 GHz. The quarter wavelength and impedance matching mechanism are explored to evaluate the microwave absorption. XRD analysis revealed formation of M (magnetoplumblite) phase in compositions x = 0.0, 0.2, while doped compositions (x = 0.4, 0.6, 0.8 and 1.0) displayed coexistence of M-phase along with orthorhombic phase (BaFe2O4). For maximum microwave absorption, the doping of Co2+ and Gd3+ leads to the reduction in thickness of composition and frequency shift from the high to low frequency region. Composition x = 0.8 exhibits good microwave absorber characteristics with 96.90% absorbed power and reflection loss of −15.0 dB at matching frequency and thickness of 8.2 GHz and 2.9 mm respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.N. Ashiq, S. Naseem, Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol–gel auto-combustion technique. J. Alloys Comp. 550, 564–572 (2013)

    Article  Google Scholar 

  2. Z.W. Li, L. Chen, C.K. Ong, Studies of static and high-frequency magnetic properties for M-type ferrite BaFe12–2xCoxZrxO19. J. Appl. Phys. 92, 3902–3907 (2002)

    Article  Google Scholar 

  3. Y.J. Kim, S.S. Kim, Microwave absorbing properties of Co-substituted Ni/sub 2/W hexaferrites in Ka-band frequencies (26.5–40 GHz). IEEE Trans. Magn. 38, 3108–3110 (2002)

    Article  Google Scholar 

  4. O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media. IEEE Trans. Magn. 18, 1122–1124 (1982)

    Article  Google Scholar 

  5. H. F. Yu, K. C. Huang, Effects of pH and citric acid contents on characteristics of ester-derived BaFe12O19 powder. J. Magn. Magn. Mater. 260, 455–461 (2003)

    Article  Google Scholar 

  6. D. Ravinder, P.V.B. Reddy, High-frequency dielectric behaviour of Li–Mg ferrites. Mater. Lett. 57, 4344–4350 (2003)

    Article  Google Scholar 

  7. G. Asghar, M. Anis-ur-Rehman, Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Comp. 526, 85–90 (2012)

    Article  Google Scholar 

  8. F.L. Wei, Magnetic properties of BaFe12–2xZnxZrxO19 particles. J. Appl. Phys. 87(12), 8636–8639 (2000)

    Article  Google Scholar 

  9. X. Liu, Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 305(2), 524–528 (2006)

    Article  Google Scholar 

  10. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  11. F.M.M. Pereira, M.R.P. Santos, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, M.M. Costa, A.S.B. Sombra, Magnetic and dielectric properties of the M-type barium strontium hexaferrite (Ba xSr1−x Fe12O19) in the RF and microwave (MW) frequency range. J. Mater. Sci. 20, 408–417 (2009)

    Google Scholar 

  12. K.K. Mallick, Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 311, 683–692 (2007)

    Article  Google Scholar 

  13. D. Seifert, J. Töpfer, M. Stadelbauer, R. Grössinger, J.-M. Le Breton, Rare-earth-substituted Sr1 xLnxFe12O19 hexagonal ferrites. J. Am. Ceram. Soc. 94(7), 2109–2118 (2011)

    Article  Google Scholar 

  14. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  Google Scholar 

  15. S.S.S. Afghahi, M. Jafarian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12–4xO19 (x = Zr,Ce,Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J. Magn. Magn. Mater. 406, 184–191 (2006)

    Article  Google Scholar 

  16. R.S. Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12–4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016)

    Article  Google Scholar 

  17. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63, 1991–1994 (2009)

    Google Scholar 

  18. M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 2007–2014 (2004)

    Article  Google Scholar 

  19. P. Singh, V.K. Babbar, A. Razdan, R.K. Puri, T.C. Goel, Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. J. Appl. Phys. 87, 4362–4366 (2000)

    Article  Google Scholar 

  20. F.M.M. Pereria, C.A.R. Junior, M.R.P. Santosh, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J.A.C. De-Paiva, A.B.S. Sombra, Sructural and dielectric spectroscopic studies of M-type barium hexaferrite alloys (BaxSr1–xFe12O19). J. Mater. Sci. 19, 627–638 (2008)

    Google Scholar 

  21. F. Song, X. Shen, J. Xiang, H. Song, Formation and magnetic properties of M–Sr ferrite hollow fibers via organic gel-precursor transformation process. Mater. Chem. Phys. 120, 213–216 (2010)

    Article  Google Scholar 

  22. P.N. Vasambekar, C.B. Kolekar, A.S. Vaigankar, Electrical switching in CdxCo1–xFe2–yCryO4 system. Mater. Res. Bull. 34, 863–868 (1999)

    Article  Google Scholar 

  23. R.S. Patil, S.V. Kakatkar, A.M. Sankpal, S. R. Sawant, S.S. Suryavanshi, U.R. Ghodke, K. Kamat, Infrared absorption of Ti4+ and Zr4+ substituted Li–Zn ferrites. Indian J. Pure. Appl. Phys. 32, 193–194 (1994)

    Google Scholar 

  24. N.W. Grimes, A.J. Collet, Correlation of infra-red spectra with structural distortions in the spinel series Mg(CrxAl2–x)O4. Phys. Status Solidi (B) 43, 591–594 (1971)

    Article  Google Scholar 

  25. J. Preudhomme, P. Tarte, Spectrochimica Acta part A: molecular spectroscopy. Spectrochim. Acta 27, 1817–1835 (1971)

    Article  Google Scholar 

  26. M.C. Chhantbar, U.N. Trivedi, P.V. Tanna, H.J. Shah, R.P. Vara, H.H. Joshi, K.B. Modi, Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system. Indian J. Phys. 78 321–326 (2004)

    Google Scholar 

  27. M. Aliahmad, M. Noori, Synthesis and characterization of nickel ferrite nanoparticles by chemical method. Indian J. Phys. 87, 431–434 (2013)

    Article  Google Scholar 

  28. M.M. Rashad, I.A. Ibrahim, A novel approach for synthesis of M-type hexaferrites nanopowders via the co-precipitation method. J. Mater. Sci. 22, 1796–1803 (2011)

    Google Scholar 

  29. T.R. Wagner, Preparation and Crystal Structure Analysis of Magnetoplumbite-Type BaGa12O19. J. Solid State Chem. 136, 120–124 (1998)

    Article  Google Scholar 

  30. C. Singh, S. Bindra Narang, I.S. Hudiara, Y. Bai, F. Tabatabaei, Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Mater. Res. Bull. 43, 176–184 (2008)

    Article  Google Scholar 

  31. M.T. Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Comp. 617, 547–562 (2014)

    Article  Google Scholar 

  32. B. Wang, J. Wei, Y. Yang, T. Wang, F. Li, Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 323 1101–1103 (2011)

    Article  Google Scholar 

  33. N.-N. Song, Y.J. Ke, H.-T. Yang, H. Zhang, X.-Q. Zhang, B.-G. Shen, Z.-H. Cheng, Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7. Sci. Rep. 2291, 1–5 (2013)

    Google Scholar 

  34. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  35. T. Inui, K. Konishi, K. Oda, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999)

    Article  Google Scholar 

  36. P.T. Tho, C.T.A. Xuan, D.M. Quang, T.N. Bach, T.D. Thanh, N.T.H. Le, D.H. Manh, N.X. Phuc, D.N.H. Nam, Microwave absorption properties of dielectric La1.5Sr0.5NiO4 ultrafine particles. Mater. Sci. Eng. 186, 101–105 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjeet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Singh, C., Singh, J. et al. A study of microwave absorbing properties in Co–Gd doped M-type Ba–Sr hexaferrites prepared using ceramic method. J Mater Sci: Mater Electron 28, 11969–11978 (2017). https://doi.org/10.1007/s10854-017-7006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7006-3

Keywords

Navigation