Skip to main content
Log in

Investigation on the effect of Cu-doping to ZnTe layers by low-cost electrochemical approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have reported the electrochemical synthesis zinc telluride (ZnTe) and copper-doped ZnTe (Cu–ZnTe) thin films by electrodeposition technique from non-aqueous electrolyte. Voltammetric investigations under dark and illumination on the deposition were performed to optimize the growth potentials for ZnTe and Cu–ZnTe. The effect of Cu-doping on the structural, morphological, compositional and optical properties has been studied by means of X-ray diffraction, scanning electron microscopy, atomic absorption spectroscopy and UV–Vis spectroscopy. The growth of semiconducting phase was revealed by photovoltammetry. The direction of photocurrent remains unchanged upon the doping of CuCl2 in ZnTe revealed no change in majority charge carriers. The values of the energy band gap of ZnTe and Cu–ZnTe, 10−4 and 2 × 10−4 Cu contents were respectively determined as 2.26, 2.23 and 2.21 eV with sharp absorption edge and enhancement in absorption for the sample grown with 1 × 10−4 M CuCl2. The structure and surface morphology of ZnTe is sensitive to the choice of the deposition potential. The un-doped film deposited at −0.75 and −0.95 V yielded a mixed cubic as well as hexagonal phase of ZnTe along with metallic tellurium. The surface morphology changes from dendritic to globular. Presence of Cu2+ ions in the ZnTe bath not only helped in preventing the formation of tellurium dendrites, it also yielded single hexagonal phase of ZnTe. In case of Cu-doped layer, the surface morphology changes from flake like structure to globular cluster upon changing the growth potential. The un-doped ZnTe samples were Te-rich, whereas Zn/Te ratio for Cu–ZnTe with 10−4 M CuCl2 was found to be nearly unity. The direction of thermoemf was indicative of a p-type response. The increased electrical conductivity in Cu–ZnTe film is associated to increase in the hole density as Cu plays a role of acceptor in ZnTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Gashin, A. Focsha, T. Potlog, A.V. Simashkevich, V. Leondar, n-ZnSe/p-ZnTe/n-CdSe tandem solar cells. Sol. Energy Mater. Sol. Cells 46, 323–331 (1997)

    Article  Google Scholar 

  2. S.H. Lee, A. Gupta, S.L. Wang, A.D. Compaan, B.E. Mccandless, Sputtered Cd1−xZnxTe films for top junctions in tandem solar cells. Sol. Energy Mater. Sol. Cells 86, 551–563 (2005)

    Article  Google Scholar 

  3. L.A. Kosyachenko, X. Mathew, O.L. Maslyanchuk, T.I. Mykytyuk, I.M. Fodchuk, V.V. Kulchynsky, Optical characteristics of CdMgTe/Cu(In,Ga)Se2 two terminal tandem solar cell. Sol. Energy 116, 399–406 (2015)

    Article  Google Scholar 

  4. C. Wei, K. Rajeshwar, J.D. Luttmer, Passivation of mercury cadmium telluride surfaces via electrochemical generation of a zinc telluride layer. J. Electrochem. Soc. 140, 829–834 (1993)

    Article  Google Scholar 

  5. S. Stolyarova, N. Amir, Y. Nemirovsky, Rapid thermal metalorganic chemical vapor deposition of II-VI compounds. J. Cryst. Growth 184, 144–148 (1998)

    Google Scholar 

  6. W.I. Han, J.H. Lee, J.S. Yu, J.C. Choi, H.S. Lee, Carrier dynamics and activation energy of CdTe quantum dots in a CdxZn1–xTe quantum well. Appl. Phys. Lett. 99, 231908 (2011)

    Article  Google Scholar 

  7. D. Ferizovic, L. Peng, H. Sultana, P. Mukherjee, S. Witanachchi, M.C. Tamargo, M. Munoz, Photoreflectance spectroscopy study of a strained-layer CdTe/ZnTe superlattice. J. Appl. Phys. 110, 093703 (2011)

    Article  Google Scholar 

  8. N. Tit, Investigation of the electronic properties of strained ZnSe/ZnTe(001) superlattices. J. Phys. 15, 6513–6525 (2003)

    Google Scholar 

  9. D. Wu, T.T. Xu, Z.F. Shi, Y.T. Tian, X.J. Li, Construction of ZnTe nanowires/Si p-n heterojunctions for electronic and optoelectronic applications. J. Alloys Compd. 661, 231–236 (2016)

    Article  Google Scholar 

  10. J.F. Butler, C.L. Lingren, F.P. Doty, Cd1−XZnxTe4 gamma-ray detectors. IEEE Trans. Nucl. Sci. 39, 605–609 (1992)

    Article  Google Scholar 

  11. S. Chusnutdinow, V.P. Makhniy, T. Wojtowicz, G. Karczewski, Electrical properties of p-ZnTe/n-CdTe photodiodes. Acta Phys. Polonica A 122, 1077–1079 (2012)

    Article  Google Scholar 

  12. L.B. Luo, S.H. Zhang, R. Lu, W. Sun, Q.L. Fang, C.Y. Wu, J.G. Hu, L. Wang, p-type ZnTe:Ga nanowires: controlled doping and optoelectronic device application. RSC Adv. 5, 13324–13330 (2015)

    Article  Google Scholar 

  13. T. Tanaka, M. Nishio, Q.X. Guo, H. Ogawa, ZnTe-based light-emitting diodes fabricated by solid-state diffusion of Al through Al oxide layer. Jpn J. Appl. Phys. 48, 022203 (2009)

    Article  Google Scholar 

  14. K.S. Lee, G. Oh, E.K. Kim, Growth of p-type ZnTe thin films by using nitrogen doping during pulsed laser deposition. J. Korean Phys. Soc. 67, 672–675 (2015)

    Article  Google Scholar 

  15. G. Lastra, P.A. Luque, M.A. Quevedo-Lopez, A. Olivas, Electrical properties of p-type ZnTe thin films by immersion in Cu solution. Mater. Lett. 126, 271–273 (2014)

    Article  Google Scholar 

  16. A.M. Freitas, M.J.V. Bell, V. Anjos, A.S. Pinheiro, N.O. Dantas, Thermal analyzes of phosphate glasses doped with Yb3 + and ZnTe nanocrystals. J. Lumin. 169, 353–358 (2016)

    Article  Google Scholar 

  17. A.R. Balu, V.S. Nagarethinam, A. Thayumanavan, K.R. Murali, C. Sanjeeviraja, M. Jayachandran, Effect of thickness on the microstructural, optoelectronic and morphological properties of electron beam evaporated ZnTe Films. J. Alloys Compd. 502, 434–438 (2010)

    Article  Google Scholar 

  18. H.P. Mahabaduge, W.L. Rance, J.M. Burst, M.O. Reese, D.M. Meysing, C.A. Wolden, J. Li, J.D. Beach, T.A. Gessert, W.K. Metzger, S. Garner, T.M. Barnes, High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates. Appl. Phys. Lett. 106, 133501 (2015)

    Article  Google Scholar 

  19. J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, C.A. Wolden, Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing. Sol. Energy Mater. Sol. Cells 133, 208–215 (2015)

    Article  Google Scholar 

  20. M.G.S.B. Ahamed, V.S. Nagarethinam, A. Thayumanavan, K.R. Murali, C. Sanjeeviraja, M. Jayachandran, Structural, optical, electrical and morphological properties of ZnTe films deposited by electron beam evaporation. J. Mater. Sci. 21, 1229–1234 (2010)

    Google Scholar 

  21. Z. Li, J. Salfi, C. De Souza, P. Sun, S.V. Nair, H.E. Ruda, Room temperature single nanowire ZnTe photoconductors grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 97, 063510 (2010)

    Article  Google Scholar 

  22. M.L. Xu, K. Gao, J.D. Wu, H. Cai, Y. Yuan, S. Prucnal, R. Hubner, W. Skorupa, M. Helm, S.Q. Zhou, Polycrystalline ZnTe thin film on silicon synthesized by pulsed laser deposition and subsequent pulsed laser melting. Mater. Res. Express 3, 036403 (2016)

    Article  Google Scholar 

  23. R. Yang, W.Q. Jie, H. Liu, Growth of ZnTe single crystals from Te solution by vertical Bridgman method with ACRT. J. Cryst. Growth 400, 27–33 (2014)

    Article  Google Scholar 

  24. M. Bouroushian, T. Kosanovic, D. Karoussos, N. Spyrellis, Electrodeposition of polycrystalline ZnTe from simple and citrate-complexed acidic aqueous solutions. Electrochim. Acta 54, 2522–2528 (2009)

    Article  Google Scholar 

  25. O. Skhouni, A. El Manoun, M. Mollar, R. Schrebler, B. Mari, ZnTe thin films grown by electrodeposition technique on fluorine tin oxide substrates. Thin Solid Films 564, 195–200 (2014)

    Article  Google Scholar 

  26. M.N. Spallart, C. Konigstein, Electrodeposition of zinc telluride. Thin Solid Films 265, 33–39 (1995)

    Article  Google Scholar 

  27. P. Heo, R. Ichino, M. Okido, ZnTe electrodeposition from organic solvents. Electrochim. Acta 51, 6325–6330 (2006)

    Article  Google Scholar 

  28. M.A. Baghchesara, M. Cheraghizade, R. Yousefi, Growth and characterization of ZnTe nanowires grown in a large scale by a CVD method. Mater. Lett. 162, 195–198 (2016)

    Article  Google Scholar 

  29. E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Ozcelik, The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe thin films. Appl. Surf. Sci. 256, 1566–1572 (2009)

    Article  Google Scholar 

  30. N.B. Chaure, S. Chaure, R.K. Pandey, Cd1−xZnxTe thin films formed by non-aqueous electrochemical route. Electrochim. Acta 54, 296–304 (2008)

    Article  Google Scholar 

  31. I.S. Zhadhov, A.J. Bard (ed.) Encyclopedia of Electrochemistry of Elements, vol. 44, (Marcel Dekker, New York, 1975), p. 93

    Google Scholar 

  32. R.K. Pandey, S.N. Sahu, S. Chandra, Handbook of Semiconductor Electrodeposition (Marcel Dekkar, New York, 1996), p. 82

    Google Scholar 

  33. F.A. Kroger, Cathodic deposition and characterization of metallic or semiconducting binary alloys or compounds. J. Electrochem. Soc. 125, 2028–2034 (1978)

    Article  Google Scholar 

  34. V.S. John, T. Mahalingam, J.P. Chu, Synthesis and characterization of copper doped zinc telluride thin films. Solid-State Electron. 49, 3–7 (2005)

    Article  Google Scholar 

  35. I. Filiński, The effects of sample imperfections on optical spectra. Phys. Status Solidi B 49, 577–588 (1972)

    Article  Google Scholar 

  36. S. Li, Y. Jiang, D. Wu, L. Wang, H. Zhong, B. Wu, X. Lan, Y. Yu, Z. Wang, J. Jie, Enhanced p-type conductivity of ZnTe nanoribbons by nitrogen doping. J. Phys. Chem. C 114, 7980–7985 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandu B. Chaure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaure, N.B., Chaure, S. & Pandey, R.K. Investigation on the effect of Cu-doping to ZnTe layers by low-cost electrochemical approach. J Mater Sci: Mater Electron 28, 11823–11831 (2017). https://doi.org/10.1007/s10854-017-6990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6990-7

Keywords

Navigation