Skip to main content
Log in

High temperature thermopower of sol–gel processed Zn1−xy Al x Me y O (Me: Ga, In)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, dually doped samples of Zn1−xy Al x Me y O (Me: Ga, In) were prepared by sol–gel process followed by hot isostatic pressing for high temperature thermoelectric applications. Material characterizations were performed with differential thermal analysis-thermogravimetry, Fourier transform infrared spectroscopy and X-ray diffraction on the target phases. Successful doping of the samples was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Thermopower values of the samples are found to be relatively high in analogy to semiconducting behavior in which negative values indicate electrons are the dominant charge carriers (n-type). Substitution of Zn2+ by Ga3+ and In3+ for Zn1−xy Al x Me y O (Me: Ga, In) increases electron concentration in the samples and thereby decreases the thermopower values compared to Zn0.98Al0.02O. Considering the absolute values, In doped samples have higher thermopower (α max = −162 µV/K at 585 °C for Zn0.96Al0.02In0.02O) compared to the Ga doped sample. Al and In dually doped Zn0.96Al0.02In0.02O could be considered as a promising n-type thermoelectric material for high temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Liu, Int. J. Eng. Sci. 55, 35–53 (2012)

    Article  Google Scholar 

  2. R. Kim, M.S. Lundstrom, J. Appl. Phys. 110(3), 034511 (2011)

    Article  Google Scholar 

  3. M.S. Dresselhaus, G. Chen, Z.F. Ren, G. Dresselhaus, A. Henry, J.-P. Fleurial, JOM 61(4), 86–90 (2009)

    Article  Google Scholar 

  4. F. Zhang, B. Niu, K. Zhang, X. Zhang, Q. Lu, J. Zhang, J. Rare Earths 31(9), 885–890 (2013)

    Article  Google Scholar 

  5. K. Park, H.K. Hwang, J.W. Seo, W.S. Seo, Energy 54, 139–145 (2013)

    Article  Google Scholar 

  6. G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2), 105–114 (2008)

    Article  Google Scholar 

  7. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B. Ali Bashir, M. Mohamad, Renew Sustain Energy Rev. 30, 337–355 (2014)

    Article  Google Scholar 

  8. S. Demirel, S. Altin, M.A. Aksan, J. Mater. Sci. 24(11), 4406–4410 (2013)

    Google Scholar 

  9. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, K. Kalantar-zadeh, Prog. Mater. Sci. 58(8), 1443–1489 (2013)

    Article  Google Scholar 

  10. M. Søndergaard, E.D. Bøjesen, K.A. Borup, S. Christensen, M. Christensen, B.B. Iversen, Acta Mater. 61(9), 3314–3323 (2013)

    Article  Google Scholar 

  11. H. Alam, S. Ramakrishna, Nano Energy 2(2), 190–212 (2013)

    Article  Google Scholar 

  12. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79(3), 1816 (1996)

    Article  Google Scholar 

  13. X. Qu, W. Wang, S. Lv, D. Jia, Solid State Commun. 151(4), 332–336 (2011)

    Article  Google Scholar 

  14. L. Han, N.V. Nong, L.T. Hung, T. Holgate, N. Pryds, M. Ohtaki, S. Linderoth, J. Alloys Compd. 555, 291–296 (2013)

    Article  Google Scholar 

  15. D. Gautam, M. Engenhorst, C. Schilling, G. Schierning, R. Schmechel, M. Winterer, J. Mater. Chem. A 3(1), 189–197 (2015)

    Article  Google Scholar 

  16. L. Han, L.T. Hung, N. van Nong, N. Pryds, S. Linderoth, J. Electron. Mater. 42(7), 1573–1581 (2012)

    Article  Google Scholar 

  17. D. Bérardan, C. Byl, N. Dragoe, J. Am. Ceram. Soc. 93(8), 2352–2358 (2010)

    Article  Google Scholar 

  18. P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, G. Ramanath, Nano Lett. 11(10), 4337–4342 (2011)

    Article  Google Scholar 

  19. T.Q. Trinh, T.T. Nguyen, D.V. Vu, D.H. Le, J. Mater. Sci. 28(1), 236–240 (2016)

    Google Scholar 

  20. M. Ohtaki, K. Araki, K. Yamamoto, J. Electron. Mater. 38(7), 1234–1238 (2009)

    Article  Google Scholar 

  21. C. Chen, T. Zhang, R. Donelson, D. Chu, R. Tian, T.T. Tan, S. Li, Acta Mater. 63, 99–106 (2014)

    Article  Google Scholar 

  22. H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong, D. Yu, Phys. Status Solidi A 208(1), 147–155 (2011)

    Article  Google Scholar 

  23. J. Nan, J. Wu, Y. Deng, C.W. Nan, J. Eur. Ceram. Soc. 23, 859–863 (2003)

    Article  Google Scholar 

  24. H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, F.P. Wang, Curr. Appl. Phys. 9(2), 409–413 (2009)

    Article  Google Scholar 

  25. Y. Wang, Y. Sui, J. Cheng, X. Wang, W. Su, J. Alloys Compd. 477(1–2), 817–821 (2009)

    Article  Google Scholar 

  26. N.N. Van, N. Pryds, Adv. Nat. Sci. 4(2), 023002 (2013)

    Google Scholar 

  27. C.-H. Lim, S.-M. Choi, W.-S. Seo, H.-H. Park, J. Electron. Mater. 41(6), 1247–1255 (2011)

    Article  Google Scholar 

  28. M.H. Bocanegra-Bernal, J. Mater. Sci. 39, 6399–6420 (2004)

    Article  Google Scholar 

  29. S. Demirci, S. Gültekin, S.A. Akalin, Ö. Öter, K. Ertekin, E. Çelik, Mater. Sci. Semicond. Process. 31, 611–617 (2015)

    Article  Google Scholar 

  30. O. Culha, M.F. Ebeoglugil, I. Birlik, E. Celik, M. Toparli, J. Sol-Gel Sci. Technol. 51(1), 32–41 (2009)

    Article  Google Scholar 

  31. K.A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L. Chen, M.I. Fedorov, E. Müller, B.B. Iversen, G.J. Snyder, Energy Environ. Sci. 8(2), 423–435 (2015)

    Article  Google Scholar 

  32. E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, J. Sol-Gel Sci. Technol. 50(3), 337–347 (2009)

    Article  Google Scholar 

  33. M. Rezaei, M. Khajenoori, B. Nematollahi, Mater. Res. Bull. 46(10), 1632–1637 (2011)

    Article  Google Scholar 

  34. R.D. Shannon, Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  35. P. Malliga, J. Pandiarajan, N. Prithivikumaran, K. Neyvasagam, IOSR J. Appl. Phys. 6(1), 22–28 (2014)

    Article  Google Scholar 

  36. K. Tang, S. Gu, J. Liu, J. Ye, S. Zhu, Y. Zheng, J. Alloys Compd. 653, 643–648 (2015)

    Article  Google Scholar 

  37. X.-K. Cai, Z.-J. Yuan, X.-M. Zhu, X. Wang, B.-P. Zhang, D.-J. Qiu, H.-Z. Wu, Chin. Phys. B 20(10), 106103 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115M579. We would like to thank to Dr. Umut Aydemir and Prof. G. J. Snyder at Northwestern University in Evanston, IL, USA for thermopower measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enes Kilinc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilinc, E., Demirci, S., Uysal, F. et al. High temperature thermopower of sol–gel processed Zn1−xy Al x Me y O (Me: Ga, In). J Mater Sci: Mater Electron 28, 11769–11778 (2017). https://doi.org/10.1007/s10854-017-6982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6982-7

Keywords

Navigation