Skip to main content
Log in

Enhanced dielectric relaxations in spark plasma sintered CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dense CaCu3Ti4O12 ceramics were prepared by spark plasma sintering method. The microstructure and dielectric properties, especially the dielectric responses, were systematically investigated and compared to solid state sintering process. The spark plasma sintered CaCu3Ti4O12 ceramics with much smaller grain size represent a higher dielectric constant than ceramics sintered by traditional solid state sintering process at room temperature and below 10 kHz. This difference is proposed to be the results of the enhanced dielectric responses in spark plasma sintered CaCu3Ti4O12 ceramics. Two dielectric relaxations in low temperature range (150–212 K) with the activation energy of 0.174 eV and 95.8 meV respectively are detected in spark plasma sintered CaCu3Ti4O12 ceramics at low and high frequency respectively, which are caused by the intrinsic mechanisms in grain associated with ionization of oxygen vacancies (VO 2+) and aliovalences of Ti and Cu ions clusters. The more distinct mid-temperature dielectric relaxation in spark plasma sintered CaCu3Ti4O12 ceramics is suggested to be the result of enhanced domain boundary effects, while the high-temperature dielectric relaxation is related to the grain boundaries. The enhanced dielectric constant and weakened temperature stability in spark plasma sintered CaCu3Ti4O12 ceramics were supposed to be the mutual function of dielectric relaxations at domain boundary and grain boundary, which can be due to the increased defects and barrier layers generated by the fast and low oxygen partial pressure of spark plasma sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  Google Scholar 

  3. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  4. L. Zhang, Z.J. Tang, Phys. Rev. B 70, 174306 (2004)

    Article  Google Scholar 

  5. S. Ke, H. Huang, H. Fan, Appl. Phys. Lett. 89, 182904 (2006)

    Article  Google Scholar 

  6. Y. Liu, R.L. Withers, X.Y. Wei, Phys. Rev. B 72, 134104 (2005)

    Article  Google Scholar 

  7. Y. Zhu, J.C. Zheng, L. Wu, A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)

    Article  Google Scholar 

  8. S.Y. Chung, Appl. Phys. Lett. 87, 052901 (2005)

    Article  Google Scholar 

  9. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  10. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  Google Scholar 

  11. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys 103, 084107 (2008)

    Article  Google Scholar 

  12. W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006)

    Article  Google Scholar 

  13. J.Y. Li, X.T. Zhao, F. Gu, S.T. Li, Appl. Phys. Lett. 100, 202905 (2012)

    Article  Google Scholar 

  14. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)

    Article  Google Scholar 

  15. D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M.C. Mozzati, C.B. Azzoni, J. Solid State Chem. 177, 4494 (2004)

    Article  Google Scholar 

  16. T.T. Fang, L.T. Mei, J. Am. Ceram. Soc. 90, 638 (2007)

    Article  Google Scholar 

  17. R. Yu, H. Xue, Z.L. Cao, L. Chen, Z.X. Xiong, J. Eur. Ceram. Soc 32, 1245 (2012)

    Article  Google Scholar 

  18. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  19. K. Chen, W. Li, Y.F. Liu, P. Bao, X.M. Lu, J.S. Zhu, Chin. Phys. Lett 21, 1815 (2004)

    Google Scholar 

  20. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Mater. Sci. Eng. B 129, 135 (2006)

    Article  Google Scholar 

  21. M.M. Ahmad, K. Yamada, J. Appl. Phys 115, 154103 (2014)

    Article  Google Scholar 

  22. M.H. Wang, B. Zhang, F. Zhou, J. Sol Gel Sci. Technol. 70, 62 (2014)

    Article  Google Scholar 

  23. B. Barbier, C. Combettes, S.G. Fritsch, T. Chartier, F. Rossignol, A. Rumeau, E. T. Lebey, Dutarde. J. Eur. Ceram. Soc. 29, 731 (2009)

    Article  Google Scholar 

  24. R. Kumar, M. Zulfequar, T.D. Senguttuvan, J. Mater. Sci. Mater. Electron. 26, 6718 (2015)

  25. Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, J. Eur. Ceram. Soc 35, 1469 (2015)

    Article  Google Scholar 

  26. L. Ni, X.M. Chen, J. Am. Ceram. Soc. 93, 184 (2010)

    Article  Google Scholar 

  27. M.M. Ahmad, Appl. Phys. Lett. 102, 232908 (2013)

    Article  Google Scholar 

  28. I.P. Raevski, S.M. Maksimov, A.V. Fisenko, S.A. Prosandeyev, I.A. Osipenko, P.F. Tarasenko, J. Phys. Condens. Matter. 10, 8015 (1998)

    Article  Google Scholar 

  29. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 531 (2001)

    Article  Google Scholar 

  30. P. Cheng, S. Li, L. Zhang, J. Li, Appl. Phys. Lett. 93, 012902 (2008)

    Article  Google Scholar 

  31. J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys 108, 104104 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (51501017), and the fund of State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201414) of China. Authors are grateful to the laboratory of Dielectric Materials in Zhejiang University for the support of SPS apparatus and measurement of dielectric properties, and appreciate the help provided by Dr. Yongjun Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Fu, M., Ren, X. et al. Enhanced dielectric relaxations in spark plasma sintered CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 28, 10191–10198 (2017). https://doi.org/10.1007/s10854-017-6783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6783-z

Keywords

Navigation