Skip to main content
Log in

Dielectric properties of microwave flash combustion derived and spark plasma sintered CaCu3Ti4O12 ceramic: role of reduction in grain boundary activation energy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 nanocrystals have been synthesized by the microwave flash combustion technique. The calcined powders were spark plasma sintered at 1050 °C for 10 min. The surface morphology of sintered samples was studied by SEM. The effects of grain boundary activation energy on dielectric properties of CCTO were investigated by collecting the dielectric data in the frequencies of 30 Hz–8 MHz at temperatures of 20–100 °C under dc bias of 0–6 V. The potential energy barrier at grain boundary has been examined by dc bias experiments. It is observed that, with an increase in dc bias from 0 to 6 V, the grain boundary activation energy decreases from 0.532 to 0.463 eV. The reduction in such grain boundary activation energy results in the decrease in dielectric constant. It is noticed that CCTO ceramic at room temperature under zero dc bias has a colossal dielectric constant of 20,000 (at 100 Hz). Using the cole–cole plot, grain and grain boundary resistance are calculated to be 13 and 52,100 Ω, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. C.C. Homes, T.S. Vogt, M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  Google Scholar 

  3. S.Y. Chung, I.D. Kim, S.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  4. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  5. R. Kumar, M. Zulfequar, L. Sharma, V.N. Singh, T.D. Senguttuvan, Cryst. Growth Des. 15, 1374 (2015)

    Article  Google Scholar 

  6. R. Kumar, M. Zulfequar, V.N. Singh, J.S. Tawale, T.D. Senguttuvan, J. Alloys Compd. 541, 428 (2012)

    Article  Google Scholar 

  7. Z. Xu, H. Qiang, Z. Chen, Y. Chen, J. Mater. Sci. Mater. Electron. 26, 578 (2015)

    Article  Google Scholar 

  8. A.M. Awasthi, J. Kumar, J. Appl. Phys. 112, 54108 (2012)

    Article  Google Scholar 

  9. J. Zheng, A.I. Frenkel, L. Wu, J. Hanson, W. Ku, E.S. Bozin, S.J.L. Billinge, Y. Zhu, Phys. Rev. B 81, 144203 (2010)

    Article  Google Scholar 

  10. M.A. Rubia, P. Leret, J. Frutos, J.F. Fernandez, J. Am. Ceram. Soc. 95, 1866 (2012)

    Article  Google Scholar 

  11. J.F. Fernandez, P. Leret, J.J. Romero, J. Frutos, M.A. Rubia, M.S. Gonzalez, J.L. Kramer, J.L.G. Fierro, A. Quesada, M.A. Garcia, J. Am. Ceram. Soc. 92, 2311 (2009)

    Article  Google Scholar 

  12. P. Delugas, P. Alippi, V. Fiorentini, V. Raineri, Phys. Rev. B 81, 81104 (2010)

    Article  Google Scholar 

  13. R. Parra, E. Joanni, J.W.M. Espinosa, R. Tararam, M. Cilense, P.R. Bueno, J.A. Varela, E. Longo, J. Am. Ceram. Soc. 91, 4162 (2008)

    Article  Google Scholar 

  14. C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, S. Seraphin, Mater. Chem. Phys. 109, 262 (2008)

    Google Scholar 

  15. B. Barbier, C. Combettes, S.G. Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey, E. Dutarde, J. Eur. Ceram. Soc. 29, 731 (2009)

    Article  Google Scholar 

  16. W.X. Yuan, Z.J. Li, Eur. Phys. J. Appl. Phys. 57, 11302 (2012)

    Article  Google Scholar 

  17. P. Jha, P. Arora, A.K. Ganguli, Mater. Lett. 57, 2443 (2003)

    Article  Google Scholar 

  18. J. Liu, Y. Sui, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Chem. Mater. 18, 3878 (2006)

    Article  Google Scholar 

  19. H. Yu, H. Liu, D. Luo, M. Cao, J. Mater. Process. Technol. 208, 145 (2008)

    Article  Google Scholar 

  20. K.P. Chen, Y. He, D.Y. Liu, Z.D. Liu, Key Eng. Mater. 368–372, 115 (2008)

    Article  Google Scholar 

  21. S. Makhluf, R. Dror, Y. Nitzam, Y. Abramovich, R. Jelinek, A. Gedanken, Adv. Funct. Mater. 15, 1708 (2005)

    Article  Google Scholar 

  22. T.V. Anuradha, S. Ranganathan, Bull. Mater. Sci. 30, 263 (2007)

    Article  Google Scholar 

  23. M. Rekha, K. Laishram, R.K. Gupta, N. Malhan, A.K. Satsangi, J. Mater. Sci. 44, 4252 (2009)

    Article  Google Scholar 

  24. H. Mohebbi, T. Ebadzadeh, F.A. Hesari, Powder Technol. 188, 183 (2009)

    Article  Google Scholar 

  25. V. Vasanthi, A. Shanmugavani, C. Sanjeeviraja, R.K. Selvan, J. Magn. Magn. Mater. 324, 2100 (2012)

    Article  Google Scholar 

  26. P.P. Hankare, R.P. Patil, A.V. Jadhav, R.S. Pandav, K.M. Garadkar, R. Sasikala, A.K. Tripathi, J. Alloys Compd. 509, 2160 (2011)

    Article  Google Scholar 

  27. M. Guo, T. Wu, T. Liu, S.X. Wang, X.Z. Zhao, J. Appl. Phys. 99, 124113 (2006)

    Article  Google Scholar 

  28. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 94124 (2006)

    Article  Google Scholar 

  29. C. Mu, H. Zhang, Y. He, J. Shen, P. Liu, J. Phys. D Appl. Phys. 42, 175410 (2009)

    Article  Google Scholar 

  30. I. Kim, A. Rothschild, H.L. Tuller, Appl. Phys. Lett. 88, 72902 (2006)

    Article  Google Scholar 

  31. L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43, 1800 (2008)

    Article  Google Scholar 

  32. P.R. Emtage, J. Appl. Phys. 48, 4372 (1977)

    Article  Google Scholar 

  33. P. Liu, Y. He, J. Zhou, C. Mu, H. Zhang, Phys. Status Solidi A 206(3), 562 (2009)

    Article  Google Scholar 

  34. M.A. Alim, S. Li, F. Liu, P. Cheng, Phys. Status Solidi A 203(2), 410 (2006)

    Article  Google Scholar 

  35. F. Iguchi, C. Chen, H. Yugami, S. Kim, J. Mater. Chem. 21, 16517 (2011)

    Article  Google Scholar 

  36. P.R. Bueno, J.A. Varela, E. Longo, J. Eur. Ceram. Soc. 28, 505 (2008)

    Article  Google Scholar 

  37. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Ranjit Kumar is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for award of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Zulfequar, M. & Senguttuvan, T.D. Dielectric properties of microwave flash combustion derived and spark plasma sintered CaCu3Ti4O12 ceramic: role of reduction in grain boundary activation energy. J Mater Sci: Mater Electron 26, 6718–6722 (2015). https://doi.org/10.1007/s10854-015-3275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3275-x

Keywords

Navigation