Skip to main content
Log in

Physico-chemical properties of Bismuth nitrate filled PVA–LiClO4 polymer composites for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of polymer composites were prepared by the addition of Bismuth nitrate (Bi(NO3)3) and Lithium perchlorate (LiClO4) to poly(vinyl alcohol) (PVA) polymer matrix by solvent casting method. The microstructures and surface morphology were systematically characterized by FTIR spectroscopy, X-ray diffraction, AFM and SEM analysis. The DSC thermal studies exhibit the transformations in the composites due to the effect of Bi(NO3)3. The mechanical strength, ac and dc conducting properties were studied. The variation of ac conductivity of the composites with frequency follows Jonscher’s universal power law and found to be increased with increasing temperature. The sample containing 10 wt% Bi(NO3)3 exhibits good mechanical strength, high conductivity and dielectric constant at room temperature. The variation of conducting properties of 10 wt% Bi(NO3)3 filled composite with temperature has been explained based on hopping mechanism. The frequency exponent (s) have been well fitted with the proposed correlation equation of the barrier hopping model. The transport parameters are estimated using Rice and Roth model. The activation energy is calculated for the sample PVA–LiClO4 matrix filled with 10 wt% Bi(NO3)3 using Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.H. Mahmoud, K. Atef, Polym. Compos. 35, 1786–1791 (2014)

    Article  Google Scholar 

  2. R.T. Abdulwahid, O.G. Abdullah, S.B. Aziz, S.A. Hussein, F F. Muhammad, M.Y. Yahya, J. Mater. Sci. 27, 12112–12118 (2016)

    Google Scholar 

  3. C.O. Avellaneda, D.F. Vieira, A. Al-Kahlout, E.R. Leite, A. Pawlicka, M.A. Aegerter, Electrochim. Acta 53, 1648–1654 (2007)

    Article  Google Scholar 

  4. K. Kesavan, C.M. Mathew, S. Rajendran, M. Ulaganathan, Mater. Sci. Eng. B 184, 26–33 (2014)

    Article  Google Scholar 

  5. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Curr. Appl. Phys. 9, 165–171 (2009)

    Article  Google Scholar 

  6. R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M.S. Bhuvaneswari, J. Power Sources 134, 235–240 (2004)

    Article  Google Scholar 

  7. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Mater. Chem. Phys 115, 557–561 (2009)

    Google Scholar 

  8. P.S. Anantha, K. Hariharan, Solid State Ion. 176, 155–162 (2005)

    Article  Google Scholar 

  9. G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, J. Power Sources 144, 262–267 (2005)

    Article  Google Scholar 

  10. S. Ramesh, A.K. Arof, Mater. Sci. Eng. B 85, 11–15 (2001)

    Article  Google Scholar 

  11. P.R. Somani, R. Marimuthu, A.K. Viswanath, S. Radhakrishnan, Polym. Degrad. Stab. 79, 77–83 (2003)

    Article  Google Scholar 

  12. M. Abdelaziz, M.M. Ghannam, Phys. B 405, 958–964 (2010)

    Article  Google Scholar 

  13. M. Krumova, D. Lopaz, R. Benavente, C. Mijangos, J.M. Perena, Polymer 41, 9265 (2000)

    Article  Google Scholar 

  14. E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El-Mansy, Optik 123, 1161–1166 (2012)

    Article  Google Scholar 

  15. S.D. Praveena, V. Ravindrachary, R.F. Bhajantri, Polym. Compos. 37, 987–997 (2016)

    Article  Google Scholar 

  16. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, T. Sheela, P.K. Pujari, J. Naik, B. Poojary, J. Polym. Res. 22, 6 (2015)

    Article  Google Scholar 

  17. K. Chatterjee, S. Ganguly, K. Kargupta, D. Banerjee, Synth. Met. 161, 275–279 (2011)

    Article  Google Scholar 

  18. H.M. Nizam El-Din, A.W.M. El-Naggar, Polym. Compos. 29, 597–605 (2008)

    Article  Google Scholar 

  19. G.P. Glaspell, P.W. Jagodzinski, A. Manivannan, J. Phys. Chem. B 108, 9604–9607 (2004)

    Article  Google Scholar 

  20. G.M. Kim, A.S. Asran, G.H. Michler, P. Simon, J.S. Kim, Bioinspir. Biomim. 3, 046003 (2008)

    Article  Google Scholar 

  21. F. Lazarini, Acta Crystallogr. 41, 1144–1145 (1985)

    Google Scholar 

  22. A.H. Bhuiyan, M.F. Mina, S. Seema, M.M. Khan, M.J. Rahman, M.A. Gafur, J. Polym. Res. 18, 1073–1079 (2011)

    Article  Google Scholar 

  23. O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, J. Mater. Sci. 27, 3591–3598 (2016)

    Google Scholar 

  24. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumaraswamy, Appl. Phys. A 87, 797–805 (2007)

    Article  Google Scholar 

  25. R. Chen, M.H. So, C.M. Che, H. Sun, J. Mater. Chem. 15, 4540–4545 (2005)

    Article  Google Scholar 

  26. U. Khan, K. Ryan, W.J. Blau, J.N. Coleman, Compos. Sci. Technol. 67, 3158–3167 (2007)

    Article  Google Scholar 

  27. R.F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S.P. Nayak, B. Poojary, Polymer 47, 3591–3598 (2006)

    Article  Google Scholar 

  28. A. El-Hadi, R. Schnabel, E. Straube, G. Müller, S. Henning, Polym. Test. 21, 665–674 (2002)

    Article  Google Scholar 

  29. D. Dhak, P. Dhak, P. Pramanik, Appl. Surf. Sci. 254, 3078–3092 (2008)

    Article  Google Scholar 

  30. J. Zhang, X. Huang, H. Wei, J. Fu, W. Liu, X. Tang, New J. Chem. 35, 614–621 (2011)

    Article  Google Scholar 

  31. R. Kotsilkova, P. Todorov, E. Ivanov, T. Kaplas, Y. Svirko, A. Paddubskaya, P. Kuzhir, Carbon 100, 355–366 (2016)

    Article  Google Scholar 

  32. V. Eskizeybek, A. Avcı, A. Gülce, Adv. Compos. Mater. (2015). doi:10.1080/09243046.2015.1052188

    Google Scholar 

  33. C. Brosseau, A. Beroual, A. Boudida. J. Appl. Phys. 88, 7278–7288 (2000)

    Article  Google Scholar 

  34. M.H. Buraidah, A.K. Arof, J. Non-Cryst. Solids 357, 3261–3266 (2011)

    Article  Google Scholar 

  35. S. Mehraj, M.S. Ansari, A.A. Alimuddin, J. Nanoeng. Nanomanuf. 3, 229–236 (2013)

    Article  Google Scholar 

  36. H.N. Chandrakala, B. Ramaraj, G.M. Madhu, J. Phys. Chem. C 117, 4771–4781 (2013)

    Article  Google Scholar 

  37. C. Chen, A. Kine, R.D. Nelson, J.C. LaRue, Synth. Met. 206, 106–114 (2015)

    Article  Google Scholar 

  38. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Phys. B 434, 57–63 (2014)

    Article  Google Scholar 

  39. A. Nigrawal, N. Chand, Prog. Nanotechnol. Nanomater. 2, 25–33 (2013)

    Google Scholar 

  40. K. P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Ionics 19, 1437–1447 (2013)

    Article  Google Scholar 

  41. S. El-Gamal, A.M. Ismail, R. El-Mallawany, J. Mater. Sci. 26, 7544–7553 (2015)

    Google Scholar 

  42. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  43. K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 112 (2012)

    Article  Google Scholar 

  44. J. Naik, R. F. Bhajantri, T. Sheela, S. G. Rathod, Polym. Compos. (2016). doi:10.1002/pc.24063

    Google Scholar 

  45. R.C. Agrawal, R.K. Gupta, J. Mater. Sci. 34, 1131–1162 (1999)

    Article  Google Scholar 

  46. S.L. Agrawal, N. Rai, J. Nanomater. (2015). doi:10.1155/2015/435625

    Google Scholar 

Download references

Acknowledgements

One of the authors, Vidyashree Hebbar acknowledges Karnatak University, Dharwad for UGC-UPE fellowship awarded. The authors are thankful to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the research projects (SR/FTP/PS-011/2010) and (SB/EMEQ-089/2013). The authors are thankful to USIC, Karnatak University, Dharwad for experimental facilities. The authors would like to acknowledge MIT, Manipal and SAIF-STIC, Cochin for XRD, JCPDS data, and SEM measurement facility, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Bhajantri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebbar, V., Bhajantri, R.F. & Naik, J. Physico-chemical properties of Bismuth nitrate filled PVA–LiClO4 polymer composites for energy storage applications. J Mater Sci: Mater Electron 28, 5827–5839 (2017). https://doi.org/10.1007/s10854-016-6254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6254-y

Keywords

Navigation