Skip to main content
Log in

Preparation and characterization of PI/PVDF composite films with excellent dielectric property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

All-organic polyimide (PI)/poly(vinylidene fluoride) (PVDF) composite materials with high dielectric constant and low dielectric loss were fabricated via solution blending. The dielectric, mechanical, and thermal properties of the PI/PVDF composite films were studied. Results indicated that the dielectric properties of the composites were highly reinforced through the introduction of PVDF, and the composites exhibited excellent thermal stability. When the mass fraction of PVDF was adjusted to 30 wt%, the specimen demonstrated excellent thermal properties, superior mechanical properties, high dielectric constant (5.7, 1 kHz), and low dielectric loss (0.009, 1 kHz). Moreover, the dependence of the dielectric constant and dielectric loss on frequency was investigated. The composite presented stable dielectric constant and dielectric loss that were less than 0.04 within the testing frequency range of 100 Hz–10 MHz. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Saleem, M. Thunga, M. Kollosche, M.R. Kessler, S. Laflamme, Polymer 55, 4531 (2014)

    Article  Google Scholar 

  2. A. da Silva, M. Arjmand, U. Sundararaj, R. Bretas, Polymer 55, 226 (2014)

    Article  Google Scholar 

  3. R. Schroeder, L.A. Majewski, M. Grell, Adv. Mater. 17, 1535 (2005)

    Article  Google Scholar 

  4. Z.M. Dang, J.B. Wu, L.Z. Fan, C.W. Nan, Chem. Phys. Lett. 376, 389 (2003)

    Article  Google Scholar 

  5. Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15, 1625 (2003)

    Article  Google Scholar 

  6. F. Xiang, H. Wang, K.C. Li, Y.H. Chen, M.H. Zhang, Z.Y. Shen, X. Yao, Appl. Phys. Lett. 91, 192907 (2007)

    Article  Google Scholar 

  7. Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Appl. Phys. Lett. 89, 072902 (2006)

    Article  Google Scholar 

  8. Z.M. Dang, H.Y. Wang, Y.H. Zhang, J.Q. Qi, Macromol. Rapid Commun. 26, 1185 (2005)

    Article  Google Scholar 

  9. J. Chon, S. Ye, K.J. Cha, S.C. Lee, Y.S. Koo, J.H. Jung, Y.K. Kwon, Chem. Mater. 22, 5445 (2010)

    Article  Google Scholar 

  10. Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, T. Tanaka, ACS Appl. Mater. Interfaces 3, 4396 (2011)

    Article  Google Scholar 

  11. L. Dong, C. Xiong, H. Quan, G. Zhao, Scripta Mater. 55, 835 (2006)

    Article  Google Scholar 

  12. T. Hanemann, H. Gesswein, B. Schumacher, Microsyst. Technol. 17, 1529 (2011)

    Article  Google Scholar 

  13. K. Abe, D. Nagao, A. Watanabe, M. Konno, Polym. Int. 62, 141 (2013)

    Article  Google Scholar 

  14. E. Hamciuc, C. Hamciuc, I. Bacosca, M. Cristea, L. Okrasa, Polym. Compos. 32, 846 (2011)

    Article  Google Scholar 

  15. W. Xu, Y. Ding, S. Jiang, W. Ye, X. Liao, H. Hou, Polym. Compos. 37, 794 (2016)

    Article  Google Scholar 

  16. A. Alias, Z. Ahmad, A.B. Ismail, Mater. Sci. Eng. B-Adv. 176, 799 (2011)

    Article  Google Scholar 

  17. X. Liu, J. Yin, Y. Kong, M. Chen, Y. Feng, Z. Wu, B. Su, Q. Lei, Thin Solid Films 544, 54 (2013)

    Article  Google Scholar 

  18. G. Wang, Y. Deng, Y. Xiang, L. Guo, Adv. Funct. Mater. 18, 2584 (2008)

    Article  Google Scholar 

  19. H. Liu, Y. Shen, Y. Song, C.W. Nan, Y. Lin, X. Yang, Adv. Mater. 23, 5104 (2011)

    Article  Google Scholar 

  20. Z.M. Dang, Y. Shen, L.Z. Fang, N. Cai, C.W. Nan, J. Appl. Phys. 93, 5543 (2003)

    Article  Google Scholar 

  21. M. Panda, V. Srinivas, A.K. Thakur, Appl. Phys. Lett. 99, 042905 (2011)

    Article  Google Scholar 

  22. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.Y. Cheng, H. Xu, C. Huang, Nature 419, 284 (2002)

    Article  Google Scholar 

  23. K. Vanherck, G. Koeckelberghs, IFJ. Vankelecom. Prog. Polym. Sci. 38, 874 (2013)

    Article  Google Scholar 

  24. Y. Bin, K. Oishi, A. Koganemaru, D. Zhu, M. Matsuo, Carbon 43, 1617 (2005)

    Article  Google Scholar 

  25. X.F. Lei, Y. Chen, H.P. Zhang, X.J. Li, P. Yao, Q.Y. Zhang, ACS Appl. Mater. Interfaces 5, 10207 (2013)

    Article  Google Scholar 

  26. H.Y. Lu, C.Y. Chou, J.H. Wu, J.J. Lin, G.S. Liou, J. Mater. Chem. C 3, 3629 (2015)

    Article  Google Scholar 

  27. S. Wu, T. Hayakawa, M. Kakimoto, H. Oikawa, Macromolecules 41, 3481 (2008)

    Article  Google Scholar 

  28. Z. Wang, B. Zhang, H. Yu, G. Li, Y. Bao, Soft Matter 7, 5723 (2011)

    Article  Google Scholar 

  29. Z. Chen, J. Zhao, S. Yan, Y. Yuan, S. Liu, Mater. Lett. 157, 201 (2015)

    Article  Google Scholar 

  30. R. Gregorio, E. Ueno, J. Mater. Sci. 34, 4489 (1999)

    Article  Google Scholar 

  31. A. DaSilva, C. Wisniewski, J. Esteves, R. Gregorio, J. Mater. Sci. 45, 4206 (2010)

    Article  Google Scholar 

  32. H. Guo, M.A.B. Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton, M. Cakmak, G. Sprowl, ACS Appl. Mater. Interfaces 3, 546 (2011)

    Article  Google Scholar 

  33. H. Yeo, M. Goh, B.C. Ku, N.H. You, Polymer 76, 280 (2015)

    Article  Google Scholar 

  34. R. Gregorio, J. Appl. Polym. Sci. 100, 3272 (2006)

    Article  Google Scholar 

  35. M. Kobayashi, K. Tashiro, H. Tadokoro, Macromolecules 8, 158 (1975)

    Article  Google Scholar 

  36. M. Drabik, J. Kousal, Y. Pihosh, A. Choukourov, H. Biederman, D. Slavinska, A. Mackova, A. Boldyreva, J. Pesicka, Vacuum 81, 920 (2007)

    Article  Google Scholar 

  37. M. Wahab, I. Kim, C. Ha, Polymer 44, 4705 (2003)

    Article  Google Scholar 

  38. J. Xia, J. Li, G. Zhang, X. Zeng, F. Niu, H. Yang, R. Sun, C. Wong, Compos. Part A Appl. Sci. Manuf. 80, 21 (2016)

    Article  Google Scholar 

  39. L. Mascia, A. Kioul, Polymer 36, 3649 (1995)

    Article  Google Scholar 

  40. Y. Chen, J. Iroh, Chem. Mater. 11, 1218 (1999)

    Article  Google Scholar 

  41. H.B. Park, J.H. Kim, J.K. Kim, Y.M. Lee, Macromol. Rapid Commun. 23, 544 (2002)

    Article  Google Scholar 

  42. X. Fang, X. Liu, Z.K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 10005 (2015)

    Article  Google Scholar 

  43. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660 (2012)

    Article  Google Scholar 

  44. L. Zhang, X. Shan, P. Wu, Z. Cheng, Appl. Phys. A 107, 597 (2012)

    Article  Google Scholar 

  45. Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Mater. Lett. 72, 9 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Guo, W., Li, C. et al. Preparation and characterization of PI/PVDF composite films with excellent dielectric property. J Mater Sci: Mater Electron 28, 4088–4094 (2017). https://doi.org/10.1007/s10854-016-6027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6027-7

Keywords

Navigation