Skip to main content

In-Situ Fabrication of Poly (m-Phenylene Isophthalamide)/Fluorographene Nanocomposites and Their Properties

  • Conference paper
  • First Online:
Engineering Solutions Toward Sustainable Development (IWBBIO 2023)

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 189 Accesses

Abstract

Nowadays, dielectric materials with excellent mechanical and thermal properties are desired for use in integrated circuits (ICs). For this reason, low dielectric constant Poly (m-phenylene isophthalamide)/fluorographene (PMIA/FG) composite films were prepared via the in-situ interfacial polycondensation method. Isophthaloyl chloride and m-phenylene diamine were reacted in a two-phase media in the presence of FG nanoparticles. suggesting that the mechanical, electrical, and thermal properties were significantly enhanced in the presence of FG. With the addition of 1.25 wt% FG, the tensile strength and elongation at break were increased by 110% and 20% respectively, when compared with pure PI film. Furthermore, composite films exhibit a 465 °C initial degradation temperature, indicating high thermal stability. Especially, the PMIA/FG film with 0.75 wt% of FG possesses a low dielectric constant of 2.15 compared to a 3.44 dielectric constant for pure PMIA. Therefore, by their excellent performance, PMIA/FG hybrid films represent suitable applications in the microelectronics and aerospace industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng J, Cao Y, Suo Y, Liu Y, Zhang J, Zheng X (2015) Facile fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta 176:1001–1009. https://doi.org/10.1016/j.electacta.2015.07.141

    Article  CAS  Google Scholar 

  2. Han K, Li Q, Chanthad C, Gadinski MR, Zhang G, Wang Q (2015) A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv Func Mater 25(23):3505–3513. https://doi.org/10.1002/adfm.201501070

    Article  CAS  Google Scholar 

  3. Kumar B, Kim SH (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1(3):342–355. https://doi.org/10.1016/j.nanoen.2012.02.001

    Article  CAS  Google Scholar 

  4. Venkat N, Dang TD, Bai Z, McNier VK, DeCerbo JN, Tsao B, Stricker JT (2010) High temperature polymer film dielectrics for aerospace power conditioning capacitor applications. Mater Sci Eng B 168(1–3):16–21. https://doi.org/10.1016/j.mseb.2009.12.038

    Article  CAS  Google Scholar 

  5. Li Q, Han K, Gadinski MR, Zhang G, Wang Q (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26(36):6244–6249. https://doi.org/10.1002/adma.201402106

    Article  CAS  Google Scholar 

  6. Peng X, Xu W, Chen L, Ding Y, Xiong T, Chen S, Hou H (2016) Development of high dielectric polyimides containing bipyridine units for polymer film capacitor. React Funct Polym 106:93–98. https://doi.org/10.1016/j.reactfunctpolym.2016.07.017

    Article  CAS  Google Scholar 

  7. Wang L (2005) Progress technology of aramid 1313 fiber. Shanghai Text Sci Technol 33:12–19

    Google Scholar 

  8. Xiongfei D, Hanwen Z, Yuxin Z (2022) J Taiwan Inst Chem Eng 139:104512–104529

    Google Scholar 

  9. Wang T, Zhao C, Li P, Li Y, Wang J (2015) Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. J Membr Sci 477:74–85. https://doi.org/10.1016/j.memsci.2014.12.038

    Article  CAS  Google Scholar 

  10. Wang T, Zhao C, Li P, Li Y, Wang J (2015) Effect of non-solvent additives on the morphology and separation performance of poly(m-phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane. Desalination 365:293–307. https://doi.org/10.1016/j.desal.2015.03.016

    Article  CAS  Google Scholar 

  11. Yang M, Zhao C, Zhang S, Li P, Hou D (2017) Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl Surf Sci 394:149–159. https://doi.org/10.1016/j.apsusc.2016.10.069

    Article  CAS  Google Scholar 

  12. Chen M, Xiao C, Wang C, Liu H, Naizhe H (2018) Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly (m-phenyleneisophthalamide) (PMIA) substrate. J Membr Sci 550:36–44. https://doi.org/10.1016/j.memsci.2017.12.040

    Article  CAS  Google Scholar 

  13. Zhai Y, Wang N, Mao X, Si Y, Yu J, Al-Deyab SS, Ding B (2014) Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A Mater Energy Sustain 2(35):14511–14518. https://doi.org/10.1039/c4ta02151g

  14. Hua D, Japip S, Wang K, Chung T (2018) Green design of poly(m-phenylene isophthalamide)-based thin-film composite membranes for organic solvent nanofiltration and concentrating lecithin in hexane. ACS Sustain Chem Eng 6(8):10696–10705. https://doi.org/10.1021/acssuschemeng.8b02021

    Article  CAS  Google Scholar 

  15. Zhang H, Zhang Y, Xu T, John AE, Li Y, Li W, Zhu B (2016) Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries. J Power Sources 329:8–16. https://doi.org/10.1016/j.jpowsour.2016.08.036

    Article  CAS  Google Scholar 

  16. Huang Z, Chen Y, Han Q, Su M, Liu Y, Wang H, Wang H (2022) Vapor-induced phase inversion of poly (m-phenylene isophthalamide) modified polyethylene separator for high-performance lithium-ion batteries. Chem Eng J 429:132–429. https://doi.org/10.1016/j.cej.2021.132429

    Article  CAS  Google Scholar 

  17. Huang J, Zhang K (2011) The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination. Desalination 282:19–26. https://doi.org/10.1016/j.desal.2011.09.045

    Article  CAS  Google Scholar 

  18. Hua C (2014) Performances of poly-m-phenylene isophthalamide and its application in individual protective clothing. J Saf Sci Technol 10

    Google Scholar 

  19. García JL, García F, Serna F, De La Peña JA (2010) High-performance aromatic polyamides. Prog Polym Sci 35(5):623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  CAS  Google Scholar 

  20. Wang X, Ding B, Wang X, Yang J, Chen L, Hu Z, Yu J (2013) Tuning hierarchically aligned structures for high-strength PMIA–MWCNT hybrid nanofibers. Nanoscale 5(3):886–889. https://doi.org/10.1039/c2nr33696k

    Article  CAS  Google Scholar 

  21. Maex K, Baklanov MR, Shamiryan D, Lacopi F, Brongersma S, Yanovitskaya ZS (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93(11):8793–8841. https://doi.org/10.1063/1.1567460

    Article  CAS  Google Scholar 

  22. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26(1):3–65. https://doi.org/10.1016/s0079-6700(00)00043-5

    Article  CAS  Google Scholar 

  23. Huang Y, Economy J (2006) New high strength low-k spin-on thin films for IC application. Macromolecules 39(5):1850–1853. https://doi.org/10.1021/ma0518398

    Article  CAS  Google Scholar 

  24. Yang S, Mirau PA, Pai C, Nalamasu O, Reichmanis E, Lin EK et al (2001) Molecular templating of nanoporous ultralow dielectric constant (≈ 1.5) organosilicates by tailoring the microphase separation of triblock copolymers. Chem Mater 13(9):2762–2764. https://doi.org/10.1021/cm0102786

  25. Du X, Zheng H, Zhang Y, Zhao N, Chen M, Huang Q (2022) Pore structure design and optimization of electrospun PMIA nanofiber membrane. J Taiwan Inst Chem Eng 139:104512. https://doi.org/10.1016/j.jtice.2022.104512

    Article  CAS  Google Scholar 

  26. Zboril R, Karlický F, Bourlinos AB, Steriotis T, Stubos AK, Georgakilas V et al (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24):2885–2891. https://doi.org/10.1002/smll.201001401

  27. Zbořil R, Karlický F, Bourlinos AB (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6:2885−2891

    Google Scholar 

  28. Novoselov KS, Jiang D, Schedin F, Booth TC, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102(30):10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  Google Scholar 

  29. Schrier J (2011) Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl Mater Interfaces 3(11):4451–4458. https://doi.org/10.1021/am2011349

    Article  CAS  Google Scholar 

  30. Mondal T, Bhowmick AK, Krishnamoorti R (2014) Stress generation and tailoring of electronic properties of expanded graphite by click chemistry. ACS Appl Mater Interfaces 6(10):7244–7253. https://doi.org/10.1021/am500471q

    Article  CAS  Google Scholar 

  31. Basaki N, Kakanejadifard A, Faghihi K (2021) Preparation of new enforcement polyamide nanocomposite filled by ternary layer double hydroxide and investigation of electrochemical activity, optical and thermal properties. Polym Bull 78(11):6723–6741. https://doi.org/10.1007/s00289-020-03508-6

    Article  CAS  Google Scholar 

  32. Gong P, Wang Z, Wang J, Wang H, Li Z, Fan Z et al (2012) One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. J Mater Chem 22(33):16950. https://doi.org/10.1039/c2jm32294c

  33. Kwolek SL, Morgan PS (1964) Preparation of polyamides, polyurethanes, polysulfonamides, and polyesters by low temperature solution polycondensation. J Polym Sci 2(6):2693–2703. https://doi.org/10.1002/pol.1964.100020619

  34. Zhu H (2021) Preparation of porous aromatic polyamide membranes and their dielectric properties. Trans Beijing Inst Technol 41:1114–1119

    Google Scholar 

  35. Takeichi T, Zuo M, Ito A (1999) Preparation and properties of porous polyimide films. High Perform Polym 11(1):1–14. https://doi.org/10.1088/0954-083/11/1/001

  36. Pramila J, Melbiah JB, Rana DS, Gandhi NN, Nagendran A, Mohan D (2018) Permeation characteristics of tailored poly (m-phenylene isophthalamide) ultrafiltration membranes and probing its efficacy on bovine serum albumin separation. Polym Testing 67:218–227. https://doi.org/10.1016/j.polymertesting.2018.03.006

    Article  CAS  Google Scholar 

  37. Lee Y, Cho T, Lee B, Rho J, An KH, Lee YH (2003) Surface properties of fluorinated single-walled carbon nanotubes. J Fluorine Chem 120(2):99–104. https://doi.org/10.1016/s0022-1139(02)00316-0

    Article  CAS  Google Scholar 

  38. Zhang P, Zhao J, Zhang K, Bai R, Wang Y, Hua C et al (2016) Fluorographene/polyimide composite films: mechanical, electrical, hydrophobic, thermal and low dielectric properties. Compos Part A Appl Sci Manuf 84:428–434. https://doi.org/10.1016/j.compositesa.2016.02.019

  39. Wang X, Dai Y, Wang W, Ren M, Li B, Fan C (2014) Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid films. ACS Appl Mater Interfaces 6(18):16182–16188. https://doi.org/10.1021/am5042516

    Article  CAS  Google Scholar 

  40. Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21(25):9271. https://doi.org/10.1039/c1jm10420a

Download references

Acknowledgements

is due to the Dean of the Faculty of Engineering at Pharos University, Prof. Dr. Mohamed Gaber Abou Ali, and to the Head of Department of Petrochemicals Engineering, Prof. Dr. Abbas Anwar Ezzat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Anwar Ezzat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elbayar, L., Abdelaty, M., Nosier, S.A., Ezzat, A.A., Shokry, F. (2024). In-Situ Fabrication of Poly (m-Phenylene Isophthalamide)/Fluorographene Nanocomposites and Their Properties. In: Negm, A.M., Rizk, R.Y., Abdel-Kader, R.F., Ahmed, A. (eds) Engineering Solutions Toward Sustainable Development. IWBBIO 2023. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-46491-1_51

Download citation

Publish with us

Policies and ethics