Skip to main content
Log in

Simple new synthesis of nickel oxide (NiO) in water using microwave irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiO with spherical-like morphology were prepared by microwave irradiation using Ni(II) acetate, water as solvent and sodium hydroxide (NaOH) as precipitator agent. Structural, optical and nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis absorption; Fourier transformed infrared (FTIR). The XRD pattern studies revealed the NiO have a face-centered cubic structure. The composition of nanostructures confirmed by analysis of FTIR spectra. The average size of the NiO nanoparticle observed from SEM images is found to be dimensions about 20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.D. Keating, M.J. Natan, Adv. Mater. 45, 451 (2003)

    Article  Google Scholar 

  2. L.J. Chen, S.M. Zhang, Z.S. Wu, Z.J. Zhang, H.X. Dang, Mater. Lett. 5, 3119 (2005)

    Google Scholar 

  3. X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Nature 437, 121 (2005)

    Article  Google Scholar 

  4. M. Law, J. Goldberger, P.D. Yang, Annu. Rev. Mater. Res. 34, 83 (2004)

    Article  Google Scholar 

  5. L. Rout, T.K. Sen, T. Punniyamurthy, Angew. Chem. Int. Ed. 119, 5679 (2007)

    Article  Google Scholar 

  6. S.W. Oh, H.J. Bang, Y.C. Bae, Y.-K. Sun, J. Power Sources 173, 502 (2007)

    Article  Google Scholar 

  7. X.Y. Deng, Z. Chen, Mater. Lett. 58, 276 (2004)

    Article  Google Scholar 

  8. S.Y. Wu, W.F. Chen, Y.F. Ferng, Mater. Lett. 60, 790–795 (2006)

    Article  Google Scholar 

  9. K.K. Purushothaman, G. Muralidharan, Solar Energy Mater. Solar Cells 93, 1195–1201 (2009)

    Article  Google Scholar 

  10. Z.G. Liu, Y.G. Zu, Y.J. Fu, Y.L. Zhang, H.L. Liang, Mater. Lett. 62, 2315–2317 (2008)

    Article  Google Scholar 

  11. I. Castro-Hurtado, J. Herran, N. Perez, S.M. Olaizola, G.G. Mandayo, E. Castano, Sens. Lett. 9, 64–68 (2011)

    Article  Google Scholar 

  12. Y. Du, W.N. Wang, X.W. Li, J. Zhao, J.M. Ma, Y.P. Liu, Mater. Lett. 68, 168–170 (2012)

    Article  Google Scholar 

  13. Y. Li, Y.S. Xie, J.H. Gong, Y.F. Chen, Z.T. Zhang, Mater. Sci. Eng. 86, 119–122 (2001)

    Article  Google Scholar 

  14. J.A. Borchers, Y. Ijiri, D.M. Lind, P.G. Ivanov, R.W. Erwin, S.H. Lee, C.F. Majkrzak, J. Appl. Phys. 85, 5883–5885 (1999)

    Article  Google Scholar 

  15. Y. Hu, H.S. Qian, T. Mei, J. Guo, T. White, Mater. Lett. 64, 1095–1098 (2010)

    Article  Google Scholar 

  16. V. Biju, Mater. Lett. 62, 2904–2906 (2008)

    Article  Google Scholar 

  17. A.C. Gandhi, C.-Y. Huang, C.C. Yang, Ting S. Chan, C.-L. Cheng, Y.-R. Ma, S.Y. Wu, Nanoscale Res. Lett. 6, 485–503 (2011)

    Article  Google Scholar 

  18. W. Shin, N. Murayama, Mater. Lett. 45, 302–306 (2000)

    Article  Google Scholar 

  19. Q.X. Xia, K.S. Hui, K.N. Hui, D.H. Hwang, S.K. Lee, W. Zhou, Y.R. Cho, S.H. Kwon, Q.M. Wang, Y.G. Son, Mater. Lett. 69, 69–71 (2012)

    Article  Google Scholar 

  20. W. Guo, K.N. Hui, K.S. Hui, Mater. Lett. 92, 291–295 (2013)

    Article  Google Scholar 

  21. L. Xiang, X.Y. Deng, Y. Jin, Scr. Mater. 47, 219–224 (2002)

    Article  Google Scholar 

  22. P. Scherrer, Estimation of size and internal structure of colloidal particles by means of Röntgen rays. Gottinger Nachrichten 2, 98 (1918)

    Google Scholar 

  23. X. Hu, J. Gong, L. Zhang, J.C. Yu, Adv. Mater. 20, 4845–4850 (2008)

    Article  Google Scholar 

  24. G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. Int. Ed. 50, 826–859 (2011)

    Article  Google Scholar 

  25. I. Bilecka, M. Niederberger, Nanoscale 2, 1358–1374 (2010)

    Article  Google Scholar 

  26. S.H. Jhung, T. Jin, Y.K. Hwang, J.-S. Chang, Chem. Eur. J. 13, 4410–4417 (2007)

    Article  Google Scholar 

  27. J. Zheng, R. Yang, L. Xie, J. Qu, Y. Liu, X. Li, Adv. Mater. 22, 1451–1473 (2010)

    Article  Google Scholar 

  28. Y. Ren, L. Gao, J. Am. Ceram. Soc. 93, 3560–3564 (2010)

    Article  Google Scholar 

  29. M. Aghazadeh, A.N. Golikand, M. Ghami, Int. J. Hydrogen Energy 36, 8674–8679 (2011)

    Article  Google Scholar 

  30. J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Nanoscale 3, 5103–5109 (2011)

    Article  Google Scholar 

  31. S.M. Meybodi, S.A. Hosseini, M. Razaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem. 5(19), 841–845 (2012)

    Article  Google Scholar 

  32. A.A. Hajry, A. Umar, M. Vaseem, M.S.A. Assiri, F.E. Tantawy, M. Bououdina, S.A. Heniti, Y.B. Hahn, Superlattice Microstruct. 44, 216–222 (2008)

    Article  Google Scholar 

  33. X. Tian, C. Cheng, L. Qian, B. Zheng, H. Yuan, S. Xie, D. Xiao, M.F. Choi, Mater. Chem. 22, 8029 (2012)

    Article  Google Scholar 

  34. Z. Wei, H. Qiaoc, H. Yanga, C. Zhanga, X. Yan, J. Alloys Compd. 479, 855 (2009)

    Article  Google Scholar 

  35. L. Wang, Y. Zhao, Q. Lai, Y.J. Hao, Alloys. Compd. 25(495), 82–87 (2010)

    Article  Google Scholar 

  36. M.S. Wu, M.J. Wang, Chem. Commun. 46, 6968–6970 (2010)

    Article  Google Scholar 

  37. P. Mohanty, C. Rath, P. Mallick, R. Biswal, N.C. Mishra, Phys. B 405, 2711–2714 (2010)

    Article  Google Scholar 

  38. T.N. Ramesh, R.S. Jayashree, P.V. Kamath, Clays Clay Miner. 51, 570–576 (2003)

    Article  Google Scholar 

  39. M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S. Senyarich, J. Power Sources 63, 247–254 (1996)

    Article  Google Scholar 

  40. C. Delmas, C. Tessier, J. Mater. Chem. 7, 1439–1443 (1997)

    Article  Google Scholar 

  41. Y.G. Andreev, T. Lundstrom, J. Appl. Crystallogr. 27, 767–771 (1994)

    Article  Google Scholar 

  42. M. Rajamathi, P.V. Kamath, R. Seshadri, J. Mater. Chem. 10, 503–506 (2000)

    Article  Google Scholar 

  43. J. Tauc, The Optical Constants are Determined by Three Methods; One of Them is New and Properties of Solids (Academic Press, Inc., New York, 1966)

    Google Scholar 

  44. G. Sinha, K. Adhikary, S. Chaudhuri, J. Phys. Condens. Matter. 18, 2409 (2006)

    Article  Google Scholar 

  45. A.M. Salem, M.S. Selim, J. Phys. D Appl. Phys. 34, 12 (2001)

    Article  Google Scholar 

  46. A.I.L. Efros, A.L. Efro, Sov. Phys. Semicond. 16, 772 (1982)

    Google Scholar 

  47. M. Karimipour, M. Molaei, S. Allahyar, J. Mater. Sci. Mater. Electron. 27(5), 4771–4776 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Allahyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahyar, S., Taheri, M., Abharya, A. et al. Simple new synthesis of nickel oxide (NiO) in water using microwave irradiation. J Mater Sci: Mater Electron 28, 2846–2851 (2017). https://doi.org/10.1007/s10854-016-5868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5868-4

Keywords

Navigation