Skip to main content
Log in

Characterization of CuO–reduced graphene oxide sandwiched nanostructure and its hydrogen sensing characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper demonstrated a high-performance hydrogen gas sensor based on CuO–reduced graphene oxide (rGO)–CuO sandwiched nanostructure. The CuO–rGO–CuO nanostructure was examined by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The gas sensing characteristics of the CuO–rGO–CuO film sensor were evaluated at room temperature against hydrogen over a wide concentration range, which are better than that of pristine CuO and rGO. High sensitivity, good repeatability, and response–recovery characteristics were achieved in this work. Furthermore, the possible sensing mechanism of the presented sensor was explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.A. Pandey, N.R. Wilson, J.A. Covington, Pd-doped reduced graphene oxide sensing films for H2 detection. Sens. Actuators B Chem. 183, 478–487 (2013)

    Article  Google Scholar 

  2. J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, T. Lee, A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl. Mater. Interfaces 7, 3554–3561 (2015)

    Google Scholar 

  3. D. Dutta, S.K. Hazra, J. Das, C.K. Sarkar, S. Basu, Studies on p-TiO2/n-graphene heterojunction for hydrogen detection. Sens. Actuators B Chem. 212, 84–92 (2015)

    Article  Google Scholar 

  4. Y. Lim, Y. Lee, J. Heo, H. Shin, Highly sensitive hydrogen gas sensor based on a suspended palladium/carbon nanowire fabricated via batch microfabrication processes. Sens. Actuators B Chem. 210, 218–224 (2015)

    Article  Google Scholar 

  5. Y.R. Wang, B. Liu, S.H. Xiao, H. Li, L.L. Wang, D.P. Cai, D.D. Wang, Y. Liu, Q.H. Li, T.H. Wang, High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide. J. Mater. Chem. A 3, 1317–1324 (2015)

    Article  Google Scholar 

  6. M. Darabpour, M. Doroodmand, Fabrication of a glow discharge plasma-based ionization gas sensor using multiwalled carbon nanotubes for specific detection of hydrogen at parts per billion levels. IEEE Sens. J. 15, 2391–2398 (2015)

    Article  Google Scholar 

  7. B. Wang, Z.Q. Zheng, L.F. Zhu, Y.H. Yang, H.Y. Wu, Self-assembled and Pd decorated Zn2SnO4/ZnO wire-sheet shape nano-heterostructures networks hydrogen gas sensors. Sens. Actuators B Chem. 195, 549–561 (2014)

    Article  Google Scholar 

  8. R. Abkadir, Z.Y. Li, A. Sadek, R. Abdulrani, A. Zoolfakar, M. Field, J.Z. Qu, A. Chrimes, K. Kalantar-Zadeh, Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J. Phys. Chem. C 118, 3129–3139 (2014)

    Article  Google Scholar 

  9. B. Mondal, B. Basumatari, J. Das, C. Roychaudhury, H. Saha, N. Mukherjee, ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing. Sens. Actuators B Chem. 194, 389–396 (2014)

    Article  Google Scholar 

  10. D. Jung, M. Han, G.S. Lee, Gas sensor using a multi-walled carbon nanotube sheet to detect hydrogen molecules. Sens. Actuators A Phys. 211, 51–54 (2014)

    Article  Google Scholar 

  11. E. Christine, B. Peter, W. Friedrich, S. Torsten, Multi- component trace analysis of organic xenobiotics in surface water containing suspended particular matter by solid phase extraction/gas chromatography-mass spectrometry. J. Chromatogr. A 1249, 181–189 (2012)

    Article  Google Scholar 

  12. C.H. Wang, S.W. Chiang, J.L. Wang, Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. J. Chromatogr. A 3, 353–358 (2010)

    Article  Google Scholar 

  13. A. Grossel, V. Zéninari, B. Parvitte, L. Joly, D. Courtois, Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide. Appl. Phys. B 88, 483–492 (2007)

    Article  Google Scholar 

  14. B. Mortazavi, B.J. Wilson, F. Dong, M. Gupta, D. Baer, Validation and application of cavity-enhanced, near-infrared tunable diode laser absorption spectrometry for measurements of methane carbon isotopes at ambient concentrations. Environ. Sci. Technol. 47, 11676–11684 (2013)

    Article  Google Scholar 

  15. H. Abdul, B.C. Morat, R. Abdul, Non-invasive evaluation of hydrogen peroxide concentrations in a drinking bottle by near-infrared spectrometry. Sens. Transducers 131, 83–90 (2011)

    Google Scholar 

  16. D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)

    Article  Google Scholar 

  17. C. Liewhiran, N. Tamaekong, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films. Sens. Actuators B Chem. 176, 893–905 (2013)

    Article  Google Scholar 

  18. D. Zhang, H. Chang, P. Li, R. Liu, Characterization of nickel oxide decroated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci. Mater. Electron. 27, 3723–3730 (2016)

    Article  Google Scholar 

  19. F. Bayata, B. Saruhan-Brings, M. Ürgen, Hydrogen gas sensing properties of nanoporous Al-doped titania. Sens. Actuators B Chem. 204, 109–118 (2014)

    Article  Google Scholar 

  20. D. Zhang, N. Yin, B. Xia, Y. Sun, Y. Liao, Z. He, S. Hao, Humidity-sensing properties of hierarchical ZnO/MWCNTs/ZnO nanocomposite film sensor based on electrostatic layer-by-layer self-assembly. J. Mater. Sci. Mater. Electron. 27, 2481–2487 (2016)

    Article  Google Scholar 

  21. C. Zhang, A. Boudiba, C. Navio, C. Bittencourt, M.G. Olivier, R. Snyders, M. Debliquy, Highly sensitive hydrogen sensors based on co-sputtered platinum activated tungsten oxide films. Int. J. Hydrog. Energy 36, 1107–1114 (2011)

    Article  Google Scholar 

  22. M. Sanhita, N. Pratanu, S.D. Parukuttyamma, Enhanced performance of CNT/SnO2 thick film gas sensors towards hydrogen. Mater. Chem. Phys. 147, 79–85 (2014)

    Article  Google Scholar 

  23. A. Kanika, S. Onkar, P.S. Manmeet, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B Chem. 195, 409–415 (2014)

    Article  Google Scholar 

  24. K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17, 3939–3943 (2006)

    Article  Google Scholar 

  25. L.B. Chen, N. Lu, C.M. Xu, H.C. Yu, T.H. Wang, Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim. Acta 54, 4198–4201 (2009)

    Article  Google Scholar 

  26. Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology 16, 88–92 (2005)

    Article  Google Scholar 

  27. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867–871 (2006)

    Article  Google Scholar 

  28. H.J. Park, N.J. Choi, H. Kang, M.Y. Jung, J.W. Park, K.H. Park, D.S. Lee, A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process. Sens. Actuators B Chem. 203, 282–288 (2014)

    Article  Google Scholar 

  29. A. Taubert, F. Stange, Z.H. Li, M. Junginger, C. Gunter, M. Neumann, A. Friedrich, CuO nanoparticles from the strongly hydrated ionic liquid precursor (ILP) tetrabutyl ammonium hydroxide: evaluation of the ethanol sensing activity. ACS Appl. Mater. Interfaces 4, 791–795 (2012)

    Article  Google Scholar 

  30. S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Kock, Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere. Sens. Actuators B Chem. 186, 550–556 (2013)

    Article  Google Scholar 

  31. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultra-sensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 225, 233–240 (2016)

    Article  Google Scholar 

  32. R. Furue, E.P. Koveke, S. Sugimoto, Y. Shudo, S. Hayami, S.I. Ohira, K. Toda, Arsine gas sensor based on gold-modified reduced graphene oxide. Sens. Actuators B Chem. 240, 657–663 (2017)

    Article  Google Scholar 

  33. D. Zhang, J. Tong, B. Xia, Q. Xue, Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B Chem. 203, 263–270 (2014)

    Article  Google Scholar 

  34. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 197, 66–72 (2014)

    Article  Google Scholar 

  35. Y. Kwon, H. Kim, S. Lee, I.J. Chin, T.Y. Seong, W.I. Lee, C. Lee, Enhanced ethanol sensing properties of TiO2 nanotube sensors. Sens. Actuators B Chem. 173, 441–446 (2012)

    Article  Google Scholar 

  36. D.H. Nguyen, Y.A. Sea, Q.D. Nguyen, V.Q. Nguyen, K. Dojin, Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection. Sens. Actuators B Chem. 146, 239–244 (2010)

    Article  Google Scholar 

  37. Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 7, 10078–10084 (2015)

    Article  Google Scholar 

  38. I.H. Kadhim, H.A. Hassan, Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique. J. Mater. Sci. Mater. Electron. 27, 4356–4362 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51407200), the Science and Technology Plan Project of Shandong Province (Grant No. 2014GSF117035), the Fundamental Research Funds for the Central Universities of China (No. 15CX05041A), and the Science and Technology Project of Huangdao Zone, Qingdao, China (No. 2014-1-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Yin, N., Jiang, C. et al. Characterization of CuO–reduced graphene oxide sandwiched nanostructure and its hydrogen sensing characteristics. J Mater Sci: Mater Electron 28, 2763–2768 (2017). https://doi.org/10.1007/s10854-016-5856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5856-8

Keywords

Navigation