Skip to main content
Log in

Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A high-performance methane gas sensor based on nickel oxide (NiO)/reduced graphene oxide (rGO) nanocomposite film was reported in this paper. The hydrothermal synthesized NiO/rGO hybrid nanocomposite was fabricated on a ceramic tube as sensing film. The nanostructures of the NiO/rGO nanocomposite film were characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The methane gas sensing behaviors of the sensor samples were investigated by exposing to various concentration of methane gas at different operating temperature. As a result, the presented sensor exhibited high-response, good repeatability and acceptable selectivity toward methane gas detection. The possible gas sensing mechanism of the proposed sensor was attributed to the Fermi energy band between rGO sheets and NiO nanoparticles. This observed results highlight the hydrothermal synthesized NiO/rGO nanocomposite film can be used as a candidate material for constructing methane sensors, given its simple process, practical usability and cost effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z.K. Horastani, S.M. Sayedi, M.H. Sheikhi, Effect of single wall carbon nanotube additive on electrical conductivity and methane sensitivity of SnO2. Sens. Actuators B 202, 461–468 (2014)

    Article  Google Scholar 

  2. D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)

    Article  Google Scholar 

  3. A. Somov, A. Baranov, D. Spirjakin, A. Spirjakin, V. Sleptsov, R. Passerone, Deployment and evaluation of a wireless sensor network for methane leak detection, high sensitivity capacitive humidity sensors. Sens. Actuators A 202, 217–225 (2013)

    Article  Google Scholar 

  4. L. Li, G. Li, Y. Yuan, Mesoporous PdO/Pt/Al2O3 film produced by reverse-micro-emulsion and its application for methane micro-sensor. RSC Adv. 5, 4586–4591 (2015)

    Article  Google Scholar 

  5. N. Park, T. Akamatsu, T. Itoh, N. Izu, W. Shin, Calorimetric thermoelectric gas sensor for the detection of hydrogen, methane and mixed gases. Sensors 14, 8350–8362 (2014)

    Article  Google Scholar 

  6. D. Nagai, M. Nishibori, T. Itoh, T. Kawabe, K. Sato, W. Shin, Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sens. Actuators B 206, 488–494 (2015)

    Article  Google Scholar 

  7. S.Z. Wu, Y. Zhang, Z.P. Li, S.M. Shuang, C. Dong, M.M.F. Choi, Optical fiber laser salinity sensor based on multimode interference effect. IEEE Sens. J. 6, 1813–1816 (2014)

    Google Scholar 

  8. B. Zhou, Z. Chen, Y. Zhang, S. Gao, S. He, Active fiber gas sensor for methane detecting based on a laser heated fiber bragg grating. IEEE Photonics Technol. Lett. 26, 1069–1072 (2014)

    Article  Google Scholar 

  9. J.X. Dai, M.H. Yanga, Z. Yang, Z. Li, Y. Wang, G.P. Wang, Y. Zhang, Z. Zhuang, Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating. Sens. Actuators B 190, 657–663 (2014)

    Article  Google Scholar 

  10. M. Triki, T. Nguyen Ba, A. Vicet, Compact sensor for methane detection in the mid infrared region based on quartz enhanced photoacoustic spectroscopy. Infrared Phys. Technol. 69, 74–80 (2015)

    Article  Google Scholar 

  11. G. Xie, P. Sun, X. Yan, X. Du, Y. Jiang, Fabrication of methane gas sensor by layer-by-layer self-assembly of polyaniline/PdO ultra thin films on quartz crystal microbalance. Sens. Actuators B 145, 373–377 (2010)

    Article  Google Scholar 

  12. P. Sun, Y.D. Jiang, G.Z. Xie, X.S. Du, J. Hu, A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor. Sens. Actuators B 141, 104–108 (2009)

    Article  Google Scholar 

  13. N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yi, D. Kim, Y.S. Han, M. Kim, Ni2O3-decorated SnO2 particulate films for methane gas sensors. Sens. Actuators B 192, 327–333 (2014)

    Article  Google Scholar 

  14. Z.K. Horastani, S.M. Sayedi, M.H. Sheikhi, Effect of single wall carbon nanotube additive on electrical conductivity and methane sensitivity of SnO2. Sens. Actuators B 202, 461–468 (2014)

    Article  Google Scholar 

  15. D. Zhang, N. Yin, B. Xia, Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci.: Mater. Electron. 26, 5937–5945 (2015)

    Google Scholar 

  16. D. Zhang, J. Tong, B. Xia, Q. Xue, Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B 203, 263–270 (2014)

    Article  Google Scholar 

  17. S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien, N. Chanlek, H. Nakajima, T. Saisopac, P. Songsiriritthigulc, N.M. Huang, S.A. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692–700 (2014)

    Article  Google Scholar 

  18. Y. Yang, C.G. Tian, J.C. Wang, L. Sun, K. Shi, W. Zhou, H.G. Fu, Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale 6, 7369–7378 (2014)

    Article  Google Scholar 

  19. G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, R. Pasricha, ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 50, 385–394 (2012)

    Article  Google Scholar 

  20. R. Sripada, V.B. Parambath, M. Baro, S.P.N. Nair, R. Sundara, Platinum and platinum-iron alloy nanoparticles dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor. Int. J. Hydrogen Energy 40, 10346–10353 (2015)

    Article  Google Scholar 

  21. I. Karaduman, E. Er, H. Celikkan, S. Acar, A new generation gas sensing material based on high-quality graphene. Sens. Actuators B 221, 1188–1194 (2015)

    Article  Google Scholar 

  22. P. Wan, W. Yang, X.N. Wang, J.M. Hu, H. Zhang, Reduced graphene oxide modified with hierarchical flower-like In(OH)3 for NO2 room-temperature sensing. Sens. Actuators B 214, 36–42 (2015)

    Article  Google Scholar 

  23. A.S.M. Iftekhar Uddin, K.W. Lee, G.S. Chung, Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid. Sens. Actuators B 216, 33–40 (2015)

    Article  Google Scholar 

  24. D.C. Tiwari, P. Atri, R. Sharma, Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites. Synth. Met. 203, 228–234 (2015)

    Article  Google Scholar 

  25. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B 197, 66–72 (2014)

    Article  Google Scholar 

  26. Z.Q. Wu, X.D. Chen, S. Zhu, Z.W. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin films. IEEE Sens. J. 13, 777–782 (2013)

    Article  Google Scholar 

  27. S. Sattari, A. Reyhani, M.R. Khanlari, M. Khabazian, H. Heydari, Synthesize of polyaniline-multi walled carbon nanotubes composite on the glass and silicon substrates and methane gas sensing behavior of them at room temperature. J. Ind. Eng. Chem. 20, 1761–1764 (2014)

    Article  Google Scholar 

  28. J. Fu, C.H. Zhao, J.L. Zhang, Y. Peng, E. Xie, Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces 5, 7410–7416 (2013)

    Article  Google Scholar 

  29. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250–272 (2014)

    Article  Google Scholar 

  30. N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yi, D. Kim, Y.S. Han, M. Kim, Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Sens. Actuators B 192, 327–333 (2014)

    Article  Google Scholar 

  31. H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)

    Article  Google Scholar 

  32. N.G. Cho, I.S. Hwang, H.G. Kim, J.H. Lee, I.D. Kim, Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens. Actuators B 155, 366–371 (2011)

    Article  Google Scholar 

  33. N. Barsan, C. Simion, T. Heine, S. Pokhrel, U. Weimar, Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceram. 25, 11–19 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51407200, 51405257), the Science and Technology Plan Project of Shandong Province (Grant No. 2014GSF117035), the Science and Technology Development Plan Project of Qingdao (Grant No. 13-1-4-179-jch), the Open Fund of National Engineering Laboratory for Ultra High Voltage Engineering Technology (Kunming, Guangzhou; Grant No. NEL201518), the Fundamental Research Funds for the Central Universities of China (Grant No. 15CX05041A), and the Science and Technology Project of Huangdao Zone, Qingdao, China (Grant No. 2014-1-51).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongzhi Zhang or Peng Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chang, H., Li, P. et al. Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J Mater Sci: Mater Electron 27, 3723–3730 (2016). https://doi.org/10.1007/s10854-015-4214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4214-6

Keywords

Navigation