Skip to main content
Log in

Improved photocatalytic properties and anti-bacterial activity of size reduced ZnO nanoparticles via PEG-assisted precipitation route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoparticles have been prepared by precipitation method with different concentrations of polyethylene glycol-6000 (PEG-6000) as capping agent. Present work highlighted that by increasing the concentration of the PEG-6000 the crystalline size can be reduced from 31 to 25 nm. It was also observed that capping agent greatly influences the morphology of ZnO nanoparticles. UV–Vis absorption spectroscopy results reveal that due to quantum confinement effect the capping of PEG-6000 with ZnO leads to blue shift which have also been corroborated by photoluminescence studies. Further, FTIR and Raman spectra evidence the presence of several modes of ZnO which further confirms the good optical quality and wurtzite hexagonal phase of the grown nanostructures. Moreover, photocatalytic tests of the PEG-capped ZnO nanoparticles for the degradation of the methyl green dye revealed extremely high photocatalytic activity compared with those of bare ZnO nanoparticles. The remarkable photocatalytic performances of PEG-capped ZnO nanoparticles were mainly due to the high concentration of surface defects. Furthermore, the PEG capped ZnO nanoparticles significantly inhibited the growth of medically important pathogenic gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli) in comparison with the bare ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.R. Parra, F.Z. Haque, Structural and optical properties of poly-vinylpyrrolidone modified ZnO nanorods synthesized through simple hydrothermal process. Opt. Int. J. Light Electron Opt. 125, 4629–4632 (2014)

    Article  Google Scholar 

  2. R.K. Dutta, B.P. Nenavathu, S. Talukdar, Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids Surf. B 114, 218–224 (2014)

    Article  Google Scholar 

  3. R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty, Correlation between defects in capped ZnO nanoparticles and their antibacterial activity. J. Photochem. Photobiol. B 126, 105–111 (2013)

    Article  Google Scholar 

  4. J. Li, G. Lu, Y. Wang, Y. Guo, Y. Guo, A high activity photocatalyst of hierarchical 3D flowerlike ZnO microspheres: synthesis, characterization and catalytic activity. J. Colloid Interface Sci. 377, 191–196 (2012)

    Article  Google Scholar 

  5. R. Khan, M.S. Hassan, H.S. Cho, A.Y. Polyakov, M.S. Khil, I.H. Lee, Facile low-temperature synthesis of ZnO nanopyramid and its application to photocatalytic degradation of methyl orange dye under UV irradiation. Mater. Lett. 133, 224–227 (2014)

    Article  Google Scholar 

  6. H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao, H. Hao, An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 1–10 (2016)

    Google Scholar 

  7. K. Ravichandran, K. Karthika, B. Sakthivel, N.J. Begum, S. Snega, K. Swaminathan, V. Senthamilselvi, Tuning the combined magnetic and antibacterial properties of ZnO nanopowders through Mn doping for biomedical applications. J. Magn. Magn. Mater. 358, 50–55 (2014)

    Article  Google Scholar 

  8. V. Lakshmi Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31, 9155–9162 (2015)

    Article  Google Scholar 

  9. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett 3, 1–6 (2013)

    Article  Google Scholar 

  10. O. Belahssen, S. Benramache, B. Benhaoua, Effect of crystallite size and precursor molarities on electrical conductivity in ZnO thin films, in 2015 27th International Conference on Microelectronics (ICM). IEEE (2015, December), pp. 182–185

  11. M. Sundar, C. Prema, Effect of pH and particle size on the magnetic behavior of cobalt doped ZnO nanocrystals. Phys. Proc. 54, 55–61 (2014)

    Article  Google Scholar 

  12. A.B. Lavand, Y.S. Malghe, Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. Int. J. Photochem. 2015, 1–9 (2015)

    Article  Google Scholar 

  13. S. Chakraborty, P. Kumbhakar, Effect of polyethylene glycol on the particle size and photoluminescence emissions characteristics of chemically synthesized ZnO nanoparticles. Opt. Commun. 318, 61–66 (2014)

    Article  Google Scholar 

  14. C.I. Covaliu, I. Jitaru, G. Paraschiv, E. Vasile, S.S. Biriş, L. Diamandescu, V. lonita, H. Iovu, Core–shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine. Powder Technol. 237, 415–426 (2013)

    Article  Google Scholar 

  15. C.C. Vidyasagar, Y.A. Naik, Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles. Arabian J. Chem. 9, 507–510 (2012)

    Article  Google Scholar 

  16. M.T. Zafarani-Moattar, R. Majdan-Cegincara, Effect of temperature on volumetric and transport properties of nanofluids containing ZnO nanoparticles poly (ethylene glycol) and water. J. Chem. Thermodymn. 54, 55–67 (2012)

    Article  Google Scholar 

  17. H. Zhang, D. Yang, X. Ma, N. Du, J. Wu, D. Que, Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. J. Phys. Chem. B. 110, 827–830 (2006)

    Article  Google Scholar 

  18. Y. Zeng, T. Zhang, W. Fu, Q. Yu, G. Wang, Y. Zhang, Y. Sui, L. Wang, C. Shao, Y. Liu, G. Zou, H. Yang, Fabrication and optical properties of large-scale nutlike ZnO microcrystals via a low-temperature hydrothermal route. J. Phys. Chem. C 113, 8016–8022 (2009)

    Article  Google Scholar 

  19. J. Kaur, R.K. Kotnala, V. Gupta, K.C. Verma, Anionic polymerization in Co and Fe doped ZnO: nanorods, magnetism and photoactivity. Curr. Appl. Phys. 14, 749–756 (2014)

    Article  Google Scholar 

  20. P.R. Potti, V.C. Srivastava, Comparative studies on structural, optical, and textural properties of combustion derived ZnO prepared using various fuels and their photocatalytic activity. Ind. Eng. Chem. Res. 51, 7948–7956 (2012)

    Article  Google Scholar 

  21. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  22. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946–1953 (2012)

    Article  Google Scholar 

  23. R. Suresh, V. Ponnuswamy, R. Mariappan, Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl. Surf. Sci. 273, 457–464 (2013)

    Article  Google Scholar 

  24. Y. Caglar, Sol–gel derived nanostructure undoped and cobalt doped ZnO: structural, optical and electrical studies. J. Alloys Compd. 560, 181–188 (2013)

    Article  Google Scholar 

  25. A. Gupta, P. Srivastava, L. Bahadur, D.P. Amalnerkar, R. Chauhan, Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl. Nanosci. 5, 787–794 (2015)

    Article  Google Scholar 

  26. X. Hou, F. Zhou, B. Yu, W. Liu, PEG-mediated synthesis of ZnO nanostructures at room temperature. Mater. Lett. 61, 2551–2555 (2007)

    Article  Google Scholar 

  27. X. Wang, Y. Zhang, C. Hao, F. Feng, H. Yin, N. Si, Solid-phase synthesis of mesoporous ZnO using lignin-amine template and its photocatalytic properties. Ind. Eng. Chem. Res. 53, 6585–6592 (2014)

    Article  Google Scholar 

  28. M.K. Debanath, S. Karmakar, Study of blueshift of optical bandgap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 111, 116–119 (2013)

    Article  Google Scholar 

  29. P.V. Adhyapak, S.P. Meshram, D.P. Amalnerkar, I.S. Mulla, Structurally enhanced photocatalytic activity of flower-like ZnO synthesized by PEG-assited hydrothermal route. Ceram. Int. 40, 1951–1959 (2014)

    Article  Google Scholar 

  30. R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J. Photochem. Photobiol. B 116, 56–65 (2012)

    Article  Google Scholar 

  31. M.A. Tshabalala, B.F. Dejene, H.C. Swart, Synthesis and characterization of ZnO nanoparticles using polyethylene glycol (PEG). Phys. B 407, 1668–1671 (2012)

    Article  Google Scholar 

  32. M. Makkar, H.S. Bhatti, K. Singh, Effect of reaction conditions on the morphology and optical properties of ZnO nanocrystals. J. Mater. Sci. Mater. Electron. 25, 4822–4829 (2014)

    Article  Google Scholar 

  33. M.L. Singla, M. Kumar, Optical characterization of ZnO nanoparticles capped with various surfactants. J. Lumin. 129, 434–438 (2009)

    Article  Google Scholar 

  34. A. Anžlovar, K. Kogej, Z.C. Orel, M. Žigon, Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology. Cryst. Growth Des. 14, 4262–4269 (2014)

    Article  Google Scholar 

  35. D. Krishnan, T. Pradeep, Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds. J. Cryst. Growth 311, 3889–3897 (2009)

    Article  Google Scholar 

  36. J. Wang, X.M. Fan, K. Tian, Z.W. Zhou, Y. Wang, Largely improved photocatalytic properties of Ag/tetrapod-like ZnO nanocompounds prepared with different PEG contents. Appl. Surf. Sci. 257, 7763–7770 (2011)

    Article  Google Scholar 

  37. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, P. Liu, J. Zhou, C.P. Wong, Z.L. Wong, H. Jin, Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013)

    Article  Google Scholar 

  38. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem. Eng. J. 146, 498–502 (2009)

    Article  Google Scholar 

  39. N. Jain, A. Bhargava, J. Panwar, Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J. 243, 549–555 (2014)

    Article  Google Scholar 

  40. R.K. Dutta, P.K. Sharma, R. Bhargava, N. Kumar, A.C. Pandey, Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles. J. Phys. Chem. B. 114, 5594–5599 (2010)

    Article  Google Scholar 

  41. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6, 755–766 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Balamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandan, M., Dinesh, S., Krishnakumar, N. et al. Improved photocatalytic properties and anti-bacterial activity of size reduced ZnO nanoparticles via PEG-assisted precipitation route. J Mater Sci: Mater Electron 27, 12517–12526 (2016). https://doi.org/10.1007/s10854-016-5764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5764-y

Keywords

Navigation