Skip to main content
Log in

Concentration-driven structural stability and dielectric dispersion in lead free (Ba1−xSc2x/3)Zr0.3Ti0.7O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead free scandium doped barium zirconate titanate (Ba1−xSc2x/3)(Zr0.3Ti0.7)O3 abbreviated as (BScZT) (x = 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were prepared by the conventional solid state reaction route and their structural, microstructural and electrical properties were investigated experimentally. X-ray diffraction and Rietveld refinement analysis are indexed by considering cubic symmetry having space group Pm-3 m. Scandium ion (Sc3+) substitution induced A-site vacancies and distortion in three dimensional cation-oxygen networks leads to disorder in the local symmetry as identified in Raman spectra. The microstructural image shows formation of smaller grains of irregular shape and sizes along with aggregative characteristic with successive increase in Sc concentration. Lorentz type quadratic behavior in dielectric dispersion follows modified Curie–Weiss law and indicates a relaxor behavior with diffuse type of phase transition. A non-Debye type of relaxation behavior is observed in these materials. Variation of relaxation strength and diffuse parameters obey the Vogel–Fulcher relation. The ac conductivity highlights the hopping of bound charge carriers between the localized environment at lower temperature and translation hopping at higher temperature is modeled through universal dielectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Uchino, Ferroelectric Devices. 321 (2000)

  2. Karin M. Rabe, Charles H. Ahn, Jean-Marc Triscone, Phys. Ferroelectr. Mod. Perspect. 105, 1–393 (2007)

    Article  Google Scholar 

  3. A. Simon, J. Ravez, Lead-free relaxors. Handb. Adv. Dielectr. Piezoelectric Ferroelectr. Mater. 896–929 (2008)

  4. Y. Xu, Perovskite-type ferroelectrics: part I. Ferroelectr. Mater. Appl. 101–162 (1991)

  5. D. Henning, A.S.G. Schnell, Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J. Am. Ceram. Soc. 65, 539–544 (1982). doi:10.1111/j.1151-2916.1982.tb10778.xjp051965d

    Article  Google Scholar 

  6. P. Taylor, Y. Liu, R.L. Withers, ferroelectrics structural disorder, polarisation and the normal to relaxor ferroelectric transition in BaTiO 3 based perovskites structural disorder, polarisation and the normal to relaxor ferroelectric transition in BaTiO 3. Ferroelectrics 402, 37–41 (2010). doi:10.1080/00150191003697039

    Article  Google Scholar 

  7. A. Kerfah, K. Taïbi, A. Guehria-Laidoudi et al., Ferroelectric relaxor behaviour of Ba1 − xAx(Ti0.7Zr0.3)O3 and Ba1 − xA’2x/3 (Ti0.7Zr0.3)O3 compositions (A = Ca, Sr; A’ = Y, La, Bi). Solid State Sci. 8, 613 (2006). doi:10.1016/j.solidstatesciences.2006.02.033

    Article  Google Scholar 

  8. W. Kleemann, S. Miga, J. Dec, J. Zhai, Crossover from ferroelectric to relaxor and cluster glass in BaTi1 − xZrxO3 (x = 0.25–0.35) studied by non-linear permittivity. Appl. Phys. Lett. 102, 232907 (2013). doi:10.1063/1.4811089

    Article  Google Scholar 

  9. P. Taylor, C. Laulhé, Phase transitions: a multinational random local strain effects in the relaxor ferroelectric BaTi1−x Zr xO3: experimental and theoretical investigation. Ph. Transit 84, 438–452 (2011). doi:10.1080/01411594.2010.547153

    Article  Google Scholar 

  10. F. Cordero, M. Corti, F. Craciun et al., Polar and nonpolar atomic motions in the relaxor ferroelectric Pb 1 − 3. Phys. Rev. B 71, 1–9 (2005). doi:10.1103/PhysRevB.71.094112

    Article  Google Scholar 

  11. A.A. Bokov, Z.-G. Ye, Double freezing of dielectric response in relaxor Pb (Mg 1/3 Nb 2/3) O 3 crystals. Phys. Rev. B 74, 132102 (2006). doi:10.1103/PhysRevB.74.132102

    Article  Google Scholar 

  12. Z. Cheng, R.S. Katiyar, Dielectr. Behav. Lead Magnes. Niobate Relax. 55, 8165–8174 (1997)

    Google Scholar 

  13. A.A. Bokov, Y.-H. Bing, W. Chen et al., Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics. Phys. Rev. B 68, 052102 (2003). doi:10.1103/PhysRevB.68.052102

    Article  Google Scholar 

  14. R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov et al., Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011). doi:10.1080/00018732.2011.555385

    Article  Google Scholar 

  15. S.N. Gvasaliya, S.G. Lushnikov, Y. Moriya et al., Specific heat of cubic relaxor ferroelectrics. J. Phys.: Condens. Matter 16, 8981–8990 (2004). doi:10.1088/0953-8984/16/49/013

    Google Scholar 

  16. Yosuke Moriya, Hitoshi Kawaji, T.A. Takeo Tojo, Specific-heat anomaly caused by ferroelectric nanoregions in Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Ta2/3)O3 relaxors. Phys. Rev. Lett. 90, 205901 (2003)

    Article  Google Scholar 

  17. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of BaZrxTi1 − xO3 system. J. Am. Ceram. Soc. 91, 1769–1780 (2008). doi:10.1111/j.1551-2916.2008.02442.x

    Article  Google Scholar 

  18. S. Singh, S.P. Singh, D. Pandey, A succession of relaxor ferroelectric transitions in Ba 0. 55 Sr 0. 45 TiO 3. J. Appl. Phys. 103, 016107–016110 (2008). doi:10.1063/1.2827506

    Article  Google Scholar 

  19. V.V. Shvartsman, J. Dec, W. Kleemann et al., Phase transitions: a multinational crossover from ferroelectric to relaxor behavior in BaTi 1−x Sn x O 3 solid solutions. Ph. Transit. 81, 37–41 (2010). doi:10.1080/01411590802457888

    Google Scholar 

  20. A.K. Kalyani, A. Senyshyn, R. Ranjan, Polymorphic phase boundaries and enhanced piezoelectric response in extended composition range in the lead free ferroelectric BaTi1−xZrxO3. J. Appl. Phys. 114, 014102–014106 (2013). doi:10.1063/1.4812472

    Article  Google Scholar 

  21. S. Miao, J. Pokorny, U.M. Pasha et al., Polar order and diffuse scatter in Ba(Ti1−xZrx)O3 ceramics. J. Appl. Phys. 106, 114111 (2009). doi:10.1063/1.3253735

    Article  Google Scholar 

  22. Z. Yu, R. Guo, A.S. Bhalla, Dielectric behavior of Ba (Ti1−xZrx) O3 single crystals. J. Appl. Phys. 88, 410–415 (2000)

    Article  Google Scholar 

  23. P.S. Dobal, A. Dixit, R.S. Katiyar et al., Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J. Appl. Phys. 89, 8085 (2001). doi:10.1063/1.1369399

    Article  Google Scholar 

  24. J.F. Carroll, P.A. David, Y. Noguchi, M. Miyayama, Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J. Appl. Phys. 92, 2655 (2002). doi:10.1063/1.1495069

    Article  Google Scholar 

  25. S. Ke, H. Fan, H. Huang et al., Dielectric dispersion behavior of Ba(ZrxTi1−x)O3 solid solutions with a quasiferroelectric state. J. Appl. Phys. 104, 034108 (2008). doi:10.1063/1.2964088

    Article  Google Scholar 

  26. A.A. Bokov, Z.G. Ye, Recent proress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006). doi:10.1007/s10853-005-5915-7

    Article  Google Scholar 

  27. W. Cai, C. Fu, J. Gao, X. Deng, Dielectric properties, microstructure and diffuse transition of Al-doped Ba(Zr0.2Ti0.8)O3 ceramics. J. Mater. Sci.: Mater. Electron. 21, 796–803 (2009). doi:10.1007/s10854-009-9995-z

    Google Scholar 

  28. X. Diez-Betriu, J.E. Garcia, C. Ostos et al., Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O3 ceramics. Mater. Chem. Phys. 125, 493–499 (2011). doi:10.1016/j.matchemphys.2010.10.027

    Article  Google Scholar 

  29. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007). doi:10.1063/1.2799081

    Article  Google Scholar 

  30. M. Ganguly, S.K. Rout, C.W. Ahn et al., Structural, electrical and optical properties of Ba(Ti1−xYb4x/3)O3 ceramics. Ceram. Int. 39, 9511–9524 (2013). doi:10.1016/j.ceramint.2013.05.070

    Article  Google Scholar 

  31. S.K. Ghosh, M. Ganguly, S.K. Rout, T.P. Sinha, Order-disorder correlation on local structure and photo-electrical properties of La3 + ion modified BZT ceramics. Eur. Phys. J. Plus 130, 68 (2015). doi:10.1140/epjp/i2015-15068-6

    Article  Google Scholar 

  32. S.K. Ghosh, M. Ganguly, S.K. Rout, T.P. Sinha, Structural and dielectric relaxor properties of A-site deficient samarium-doped (Ba1−x Sm2x/3)(Zr0.3Ti0.7O3) ceramics. J. Mater. Sci. 49, 5441–5453 (2014). doi:10.1007/s10853-014-8256-6

    Article  Google Scholar 

  33. S.K. Ghosh, M. Ganguly, S.K. Rout et al., Structural, optical and dielectric relaxor properties of neodymium doped cubic perovskite (Ba1−xNd2x/3)(Zr0.3Ti0.7)O3. Solid State Sci. 30, 68–77 (2014). doi:10.1016/j.solidstatesciences.2014.02.007

    Article  Google Scholar 

  34. V. Buscaglia, S. Tripathi, V. Petkov et al., Average and local atomic-scale structure in BaZrxTi(1−x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy. J. Phys.: Condens. Matter 26, 065901 (2014). doi:10.1088/0953-8984/26/6/065901

    Google Scholar 

  35. R. Farhi, Marssi M. El, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric Ba (Ti 1−x Zr x) O 3 ceramics. Eur. Phys. J. B 604, 599–604 (1999)

    Article  Google Scholar 

  36. A. Scalabrain, A.S. Craves, D.S. Shima, S.P.S. Porto, Temperature dependence of the A, and E optical phonons in BaTiO. Phys. Status Solidi. 79, 731–742 (1977)

    Article  Google Scholar 

  37. M.J.R. DiDOmenico, S.H. Wfmrle, S.P.S.B.R. Portro, Raman spectrum of single-domain BaTiO3. Phys. Rev. B 174, 522–530 (1967). doi:10.1103/PhysRev.174.522

    Article  Google Scholar 

  38. U.D. Venkateswaran, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58, 256–260 (1998)

    Article  Google Scholar 

  39. J. Kreisel, P. Bouvier, High-pressure Raman spectroscopy of nano-structured ABO3 perovskites: a case study of relaxor ferroelectrics. J. Raman Spectrosc. 34, 524–531 (2003). doi:10.1002/jrs.1032

    Article  Google Scholar 

  40. M.T. Buscaglia, V. Buscaglia, M. Viviani et al., Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997–2007 (2000)

    Article  Google Scholar 

  41. A.A. Bokov, Z.-G. Ye, Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielectr. 02, 1241010 (2012). doi:10.1142/S2010135X1241010X

    Article  Google Scholar 

  42. A.A. Bokov, M. Maglione, Z.-G. Ye, Quasi-ferroelectric state in Ba(Ti 1 − x Zr x)O 3 relaxor: dielectric spectroscopy evidence. J. Phys.: Condens. Matter 19, 092001 (2007). doi:10.1088/0953-8984/19/9/092001

    Google Scholar 

  43. A.A. Bokov, M. Maglione, A. Simon, Z.-G. Ye, Dielectric behavior of Ba(Ti1−xZrx)O3 solid solution. Ferroelectrics 337, 169–178 (2006). doi:10.1080/00150190600716747

    Article  Google Scholar 

  44. A.A. Bokov, Z. Ye, Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics. Solid State Commun. 116, 105–108 (2000)

    Article  Google Scholar 

  45. A. Pelaiz Barranco, J.D.S. Guerra, Dielectric relaxation phenomenon in ferroelectric perovskite-related structures. Ferroelectrics. 165–186 (2010)

  46. W. Xiaoyong, F. Yujun, X. Yao, Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition. Appl. Phys. Lett. 83, 2031 (2003)

    Article  Google Scholar 

  47. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987). doi:10.1007/978-3-540-68683-5_5

    Article  Google Scholar 

  48. Xu Yuhuan, H. Wang, The micro-analysis for composition in DPT ferroelectrics. Jpn. J. Appl. Phys. S 24–2, 236–238 (1985)

    Article  Google Scholar 

  49. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  50. A.K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981)

    Article  Google Scholar 

  51. K.S. Rao, P.M. Krishna, D.M. Prasad et al., Dielectric spectroscopy characteristics of ferroelectric Pb 0.77 K 0.26 Li 0.2 Ti 0.25 Nb 1.8 O 6 ceramics. Philos. Mag. 88, 3129–3143 (2008). doi:10.1080/14786430802464222

    Article  Google Scholar 

  52. S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87, 256–263 (2004). doi:10.1016/j.matchemphys.2004.03.005

    Article  Google Scholar 

Download references

Acknowledgments

SKG and SKR are gratefully acknowledged the financial support of the major research project (F. No. 530/3/DRS/2011-SAP-I) funded by UGC, Govt. of India under SAP research program and the financial support through DST-FIST program. All authors acknowledge the UGC-DAE Consortium for Scientific Research, Mumbai Centre for low temperature dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Ghosh or S. K. Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Deshpande, S.K. & Rout, S.K. Concentration-driven structural stability and dielectric dispersion in lead free (Ba1−xSc2x/3)Zr0.3Ti0.7O3 ceramics. J Mater Sci: Mater Electron 28, 1336–1351 (2017). https://doi.org/10.1007/s10854-016-5665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5665-0

Keywords

Navigation