Skip to main content
Log in

Structural and dielectric relaxor properties of A-site deficient samarium-doped (Ba1−x Sm2x/3)(Zr0.3Ti0.7O3) ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare earth samarium (Sm)-doped barium zirconate titanate (Ba1−x Sm2x/3)(Zr0.3Ti0.7)O3 (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were prepared using solid state reaction (SSR) route. The structural and microstructural characterizations of the materials were done by using X-ray diffraction and SEM analysis, respectively. Rietveld refinement technique employed to investigate the details of crystal structure revealed single-phase cubic perovskite structure belonging to space group Pm-3m. Microstructure of the doped ceramics were found to be porous and of irregular shape and size along with aggregative characteristic. FTIR technique was employed to study the influence of additives in ceramics compositions and to investigate the displacement of M–O bonds. Raman spectroscopic study revealed that the substitution of Ba2+ ions by Sm3+ ions shifted the Raman-active modes toward higher energy, which indicated that these materials undergo an increase in average cubicity with increase in Sm3+ ion concentration. The temperature dependence of dielectric properties was investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurement indicated a diffuse type of phase transition (DPT). The broadening in the dielectric permittivity and frequency dependence behavior with increase in frequency indicated a relaxor behavior of these materials. The relaxation strength of these materials was well adjusted by using the Vogel–Fulcher relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu Z, Guo R, Bhalla AS (2000) Dielectric behavior of Ba(Ti1−x Zr x )O3 single crystals. J Appl Phys 88:410. doi:10.1063/1.373674

    Article  Google Scholar 

  2. Yu Z, Ang C, Guo R, Bhalla AS (2002) Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field. Appl Phys Lett 81:1285. doi:10.1063/1.1498496

    Article  Google Scholar 

  3. Maiti T, Guo R, Bhalla AS (2006) Electric field dependent dielectric properties and high tunability of BaZr x Ti1−x O3 relaxor ferroelectrics. Appl Phys Lett 89:122909. doi:10.1063/1.2354438

    Article  Google Scholar 

  4. Yu Z, Ang C, Guo R, Bhalla AS (2002) Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J Appl Phys 92:2655. doi:10.1063/1.1495069

    Article  Google Scholar 

  5. Ang C, Yu Z, Jing Z, Guo R, Bhalla AS, Cross LE (2002) Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO3 ceramics. Appl Phys Lett 80:3424. doi:10.1063/1.1473871

    Article  Google Scholar 

  6. Rabe KM, Dawber M (2007) Modern physics of ferroelectrics : essential background. Appl Phys 105:1–30

    Article  Google Scholar 

  7. Anwar S, Sagdeo PR, Lalla NP (2006) Crossover from classical to relaxor ferroelectrics in Ba(Ti1−x Hf x )O3 ceramics. J Phys Condens Matter 18:3455–3468. Online stacks.iop.org/JPhysCM/18/3455

  8. Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95:1–26. doi:10.1111/j.1551-2916.2011.04952.x

    Article  Google Scholar 

  9. Bokov AA, Ye ZG (2006) Recent process in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52. doi:10.1007/s10853-005-5915-7

    Article  Google Scholar 

  10. Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76:241–267. doi:10.1007/978-3-540-68683-5_5

    Article  Google Scholar 

  11. Tang XG, Chew K-H, Chan HLW (2004) Diffuse phase transition and dielectric tunability of Ba(Zr y Ti1−y )O3 relaxor ferroelectric ceramics. Acta Mater 52:5177–5183. doi:10.1016/j.actamat.2004.07.028

    Article  Google Scholar 

  12. Gao L, Zhai J, Zhang Y, Yao X (2010) Influence of rare-earth addition on dielectric properties and relaxor behavior of barium zirconium titanate thin films. J Appl Phys 107:064105. doi:10.1063/1.3330753

    Article  Google Scholar 

  13. Aliouane K, Guehria-Laidoudi a, Simon a, Ravez J (2005) Study of new relaxor materials in BaTiO3BaZrO3La2/3TiO3 system. Solid State Sci 7:1324–1332. doi:10.1016/j.solidstatesciences.2005.06.010

    Article  Google Scholar 

  14. Slipenyuk AM, Glinchuk MD, Bykov IP, Yurchenko LP (2003) Study of BaTiO3 ceramics doped with Mn and Ce or Nb and Sr. Condens Matter Phys 6:237–244. doi:10.5488/CMP.6.2.237

    Article  Google Scholar 

  15. Bobade SM, Gulwade DD, Kulkarni AR, Gopalan P (2005) Dielectric properties of A- and B-site-doped BaTiO3(I): La- and Al-doped solid solutions. J Appl Phys 97:074105. doi:10.1063/1.1879074

    Article  Google Scholar 

  16. Ostos C, Mestres L, Martínez-Sarrión ML, García JE, Albareda A, Perez R (2009) Synthesis and characterization of A-site deficient rare-earth doped BaZrxTi1−x O3 perovskite-type compounds. Solid State Sci 11:1016–1022. doi:10.1016/j.solidstatesciences.2009.01.006

    Article  Google Scholar 

  17. Morrison FD, Sinclair DC, West AR (2001) Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. Int J Inorg Mater 3:1205–1210. doi:10.1016/S1466-6049(01)00128-3

    Article  Google Scholar 

  18. Jung Y, Na E, Paik U (2002) A study on the phase transition and characteristics of rare earth elements doped BaTiO3. Mater Res Bull 37:0–7. doi:10.1016/S0025-5408(02)00813-9

    Google Scholar 

  19. Morrison FD, Coats AM, Sinclair DC, West AR (2001) Charge compensation mechanisms in La-doped BaTiO3. J Electroceram 6(3):219–232. doi:10.1023/A:1011400630449

    Article  Google Scholar 

  20. Kerfah A, Taïbi K, Guehria-Laidoudi A, Simon A, Ravez J (2006) Ferroelectric relaxor behaviour of Ba1−x A x (Ti0.7Zr0.3)O3 and Ba1−x A’2 x/3(Ti0.7Zr0.3)O3 compositions (A = Ca, Sr; A’ = Y, La, Bi). Solid State Sci 8:613–618. doi:10.1016/j.solidstatesciences.2006.02.033

    Article  Google Scholar 

  21. Toby BH (2001) EXPGUI, a graphical use interphase for GSAS. J Appl Crystallogr 34:210–221

    Article  Google Scholar 

  22. Kojitani H, Kido M, Akaogi M (2005) Rietveld analysis of a new high-pressure strontium silicate SrSi2O5. Phys Chem Miner 32:290–294

    Article  Google Scholar 

  23. Maiti T, Guo R, Bhalla AS (2006) The evolution of relaxor behavior in Ti4+ doped BaZrO3 ceramics. J Appl Phys 100:1–6. doi:10.1063/1.2392996

    Article  Google Scholar 

  24. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi:10.1107/S0021889811038970

    Article  Google Scholar 

  25. Badapanda T, Rout SK, Cavalcante LS, Sczancoski JC, Panigrahi S, Longo E, Li MS (2009) Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti0.75)O3 ceramic explained by means of distorted clusters. J Phys D 42:175414. doi:10.1088/0022-3727/42/17/175414

    Article  Google Scholar 

  26. Parida S, Rout SK, Cavalcante LS, Simões AZ, Barhai PK, Batista NC, Longo E, Siu Li M, Sharma SK (2013) Structural investigation and improvement of photoluminescence properties in Ba(Zr x Ti1−x )O3 powders synthesized by the solid state reaction method. Mater Chem Phys 142:70–76. doi:10.1016/j.matchemphys.2013.06.041

    Article  Google Scholar 

  27. Sczancoski JC, Cavalcante LS, Badapanda T, Rout SK, Panigrahi S, Mastelaro VR, Varela JA, Li MS, Longo E (2010) Structure and optical properties of Ba1−x Y2x/3(Zr0.25Ti0.75)O3 powders. Solid State Sci 12:1160–1167. doi:10.1016/j.solidstatesciences.2010.04.002

    Article  Google Scholar 

  28. Didomenico M, Wemple SH, Porto SP, Bauman RP (1967) Raman spectrum of single-domain BaTiO3. Phys Rev B 174:522–530. doi:10.1103/PhysRev.174.522

    Article  Google Scholar 

  29. Yang G, Yue Z, Sun T, Zhao J, Yang Z, Li L (2008) Investigation of ferroelectric phase transition for modified barium titanate in multilayer ceramic capacitors by in situ Raman scattering and dielectric measurement. Appl Phys A 91:119–125. doi:10.1007/s00339-007-4370-5

    Article  Google Scholar 

  30. Levin I, Amos TG, Bell SM, Farber L, Vanderah TA, Roth RS, Toby BH (2003) Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system. J Solid State Chem 175:170–181. doi:10.1016/S0022-4596(03)00220-2

    Article  Google Scholar 

  31. Dobal PS, Dixit A, Katiyar RS, Yu Z, Guo R, Bhalla AS (2001) Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J Appl Phys 89:8085. doi:10.1063/1.1369399

    Article  Google Scholar 

  32. Ganguly M, Rout SK, Ahn CW, Kim IW, Kar M (2013) Structural, electrical and optical properties of Ba(Ti1−x Yb4x/3)O3 ceramics. Ceram Int 39:9511–9524. doi:10.1016/j.ceramint.2013.05.070

    Article  Google Scholar 

  33. Buscaglia MT, Buscaglia V, Viviani M, Nanni P, Hanuskova M (2000) Influence of foreign ions on the crystal structure of BaTiO3. J Eur Ceram Soc 20:1997–2007. doi:10.1016/S0955-2219(00)00076-5

    Article  Google Scholar 

  34. García Murillo A, Carrillo Romo FJ, García Hernández M, Ramírez Salgado J, Domínguez Crespo MA, Palomares Sánchez SA, Terrones H (2009) Structural and morphological characteristics of polycrystalline BaTiO3: Er3+, Yb3+ ceramics synthesized by the sol–gel route: influence of chelating agents. J Sol–Gel Sci Technol 53:121–133. doi:10.1007/s10971-009-2069-0

    Article  Google Scholar 

  35. Vugmeister BE, Glinchuk MD (1990) Dipole glass and ferroelectricity. Rev Mod Phys 62:993–1026. doi:10.1103/RevModPhys.62.993

    Article  Google Scholar 

  36. Henning D, Schnell ASG (1982) Diffuse ferroelectric phase transitions in Ba(Ti1−y Zr y )O3 ceramics. J Am Ceram Soc 65:539–544. doi:10.1111/j.1151-2916.1982.tb10778.xjp051965d

    Article  Google Scholar 

  37. Wang L, Richert R (2005) Debye type dielectric relaxation and the glass transition of alcohols. J Phys Chem B 109:11091–11094. doi:10.1021/jp051965d

    Article  Google Scholar 

  38. Chou X, Zhai J, Jiang H, Yao X (2007) Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J Appl Phys 102:084106. doi:10.1063/1.2799081

    Article  Google Scholar 

  39. Diez-Betriu X, Garcia JE, Ostos C, Boya AU, Ochoa DA, Mestres L, Perez R (2011) Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O3 ceramics. Mater Chem Phys 125:493–499. doi:10.1016/j.matchemphys.2010.10.027

    Article  Google Scholar 

  40. Santos IA, Eiras JA (2001) Phenomenological description of the diffuse phase transition in ferroelectrics. J Phys Condens Matter 13:11733–11740. Online Stack.iop.org/JPhysCM/13/11733

  41. Ganguly M, Rout SK, Woo WS, Ahn CW, Kim IW (2013) Characterization of A-site deficient samarium doped barium titanate. Phys B 411:26–34. doi:10.1016/j.physb.2012.11.006

    Article  Google Scholar 

  42. Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 Ceramics. J Am Ceram Soc 92:110–118. doi:10.1111/j.1551-2916.2008.02798.x

    Article  Google Scholar 

Download references

Acknowledgement

Authors gratefully acknowledge the financial support of the major research project (F. No. 39-865/2010) funded by UGC, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Ganguly, M., Rout, S.K. et al. Structural and dielectric relaxor properties of A-site deficient samarium-doped (Ba1−x Sm2x/3)(Zr0.3Ti0.7O3) ceramics. J Mater Sci 49, 5441–5453 (2014). https://doi.org/10.1007/s10853-014-8256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8256-6

Keywords

Navigation