Skip to main content
Log in

Reduced operating temperature of active layer Si covered by nanocrystalline diamond film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the heat dissipation ability of nanocrystalline diamond (NCD) film used as an insulator in interconnection layers. The thermal resistance is used as an evidence for evaluating particular ability. There are two points to measure, that is to say, the temperature in the active Si region and that of the nearest point at the top of the insulating film. We used a thin film Si resistor covered with NCD or silicon dioxide (SiO2) on a silicon on insulator substrate. The NCD film was deposited by microwave-plasma chemical vapor deposition at 400 °C, while the SiO2 film was deposited by plasma-enhanced chemical vapor deposition at 350 °C. The thickness of the NCD film was 600 nm, while that of the SiO2 film was 300 and 500 nm. The aluminium (Al) was deposited by sputtering and patterned on the top of the insulating-film. Heat was applied to the resistor by directly applying electricity to the resistor. The temperature of the Si resistor and Al was determined from the resistance change. It was found that the thermal resistance of NCD film was approximately 14 % less than that of SiO2 film, leading to the reduction of the thin-film Si temperature by 20 °C, even though it was thicker than 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O. Semenov, A. Vassighi, M. Sachdev, IEEE Trans. Device Mater. Reliab. 6, 17 (2006)

    Article  Google Scholar 

  2. V. Singhal, T. Siegmund, S.V. Garimella, IEEE Trans. Compon. Package Technol. 27, 244 (2004)

    Article  Google Scholar 

  3. B. Dang, M.S. Bakir, J.D. Meindl, IEEE Electron Device Lett. 27, 117 (2006)

    Article  Google Scholar 

  4. B. Dang, M.S. Bakir, D.C. Sekar, C.R. King Jr., J.D. Meindl, IEEE Trans. Adv. Package 33, 79 (2010)

    Article  Google Scholar 

  5. Y. Han, B.L. Lau, G. Tang, X. Zhang, IEEE Trans. Compon. Package Manuf. Technol. 5, 1740 (2015)

    Article  Google Scholar 

  6. M. Zhu, P.K. Chu, X. Shi, M. Wong, W. Liu, C. Lin, Appl. Phys. Lett. 85, 2532 (2004)

    Article  Google Scholar 

  7. A. Aleksov, J.M. Gobien, X. Li, J.T. Prater, Z. Sitar, Diam. Relat. Mater. 15, 248 (2006)

    Article  Google Scholar 

  8. J. Widiez, M. Rabarot, S. Saada, J.-P. Mazellier, J. Dechamp, V. Delaye, J.-C. Roussin, F. Andrieu, O. Faynot, S. Deleonibus, P. Bergonzo, L. Clavelier, Solid State Electron. 54, 158 (2010)

    Article  Google Scholar 

  9. M. Rabarot, J. Widiez, S. Saada, J.-P. Mazellier, C. Lecouvey, J.-C. Roussin, J. Dechamp, P. Bergonzo, F. Andrieu, O. Faynot, S. Deleonibus, L. Clavelier, J.P. Roger, Diam. Relat. Mater. 19, 796 (2010)

    Article  Google Scholar 

  10. S. Duangchan, Y. Uchikawa, Y. Koishikawa, B. Akiyoshi, K. Nakagawa, S. Matsumoto, M. Hasegawa, S. Nishizawa, The 65th electronic components and technology conference (2015), p. 187

  11. G. Cha, R. Gafiteanu, U. Gosele, J. Microelectromech. Syst. 3, 29 (1994)

    Article  Google Scholar 

  12. R.C. Gui, M. Elwenspoek, N. Tas, J.G.E. Gardeniers, J. Appl. Phys. 85, 7448 (1999)

    Article  Google Scholar 

  13. G.N. Yushin, S.D. Wolter, A.V. Kvit, R. Collazo, B.R. Stoner, J.T. Prater, Z. Sitar, Appl. Phys. Lett. 81, 3275 (2002)

    Article  Google Scholar 

  14. S.D. Wolter, G.N. Yushin, F. Okuzumi, B.R. Stoner, J.T. Prater, Z. Sitar, Diam. Relat. Mater. 11, 482 (2002)

    Article  Google Scholar 

  15. J.-P. Raskin, J. Microelectromech. Syst. 14, 368 (2005)

    Article  Google Scholar 

  16. G. Liao, T. Shi, X. Lin, Z. Ma, Sens. Actuators A Phys. 158, 335 (2010)

    Article  Google Scholar 

  17. V. Masteika, J. Kowal, N.S.J. Braithwaite, T. Rogers, ECS J. Solid State Sci. Technol. 3, Q42 (2014)

    Article  Google Scholar 

  18. R. Shirahama, S. Duangchan, Y. Koishikawa, A. Baba, The 3D systems integration conference (2015), p. TS8.16.1

  19. M. Kaviany, Essentials of Heat Transfer: Principles, Materials, and Applications (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  20. S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, K.E. Goodson, Int. J. Thermophys. 22, 605 (2001)

    Article  Google Scholar 

  21. M. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments (Springer, New York, 2011)

    Book  Google Scholar 

  22. K. Nakagawa, T. Kodama, S. Matsumoto, T. Yamada, M. Hasegawa, S. Nishizawa, Jpn. J. Appl. Phys. 53, 04EP16 (2014)

    Article  Google Scholar 

  23. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  24. CHEMIE.DE (Online). http://www.chemie.de/lexikon/Kohlenstoff.html

  25. C.J. Chu, R.H. Hauge, J.L. Margrave, M.P. D’Evelyn, Appl. Phys. Lett. 61, 1393 (1992)

    Article  Google Scholar 

  26. J.G. Buijnsters, P. Shankar, J.J. Ter Meulen, Surf. Coat. Technol. 201, 8955 (2007)

    Article  Google Scholar 

  27. T. Schuelke, T.A. Grotjohn, Diamond polishing. Diam. Relat. Mater. 32, 17 (2013)

    Article  Google Scholar 

  28. E.E. Ashkihazi, E.V. Zavedeev, A.P. Bolshakov, V.G. Ralchenko, S.G. Ryzhkov, A.V. Polsky, N.I. Kuznetsov, G.V. Sharonov, V.N. Tkach, V.I. Konov, Inorg. Mater. Appl. Res. 5, 230 (2014)

    Article  Google Scholar 

  29. T. Yara, H. Makita, A. Hatta, T. Ito, A. Hiraki, Jpn. J. Appl. Phys. 34, L312 (1995)

    Article  Google Scholar 

  30. F. Piazza, G. Morell, Diam. Relat. Mater. 16, 1950 (2007)

    Article  Google Scholar 

  31. S. Potocky, A. Kromka, J. Potmesil, Z. Remes, V. Vorlicek, M. Vanecek, M. Michalka, Diam. Relat. Mater. 16, 744 (2007)

    Article  Google Scholar 

  32. K. Tsugawa, M. Ishihara, J. Kim, Y. Koga, M. Hasegawa, Phys. Rev. B 82, 125460 (2010)

    Article  Google Scholar 

  33. O.A. Williams, Diam. Relat. Mater. 20, 621 (2011)

    Article  Google Scholar 

  34. S. Sze, M. Lee, Semiconductor Devices: Physics and Technology, 3rd edn. (Wiley, Singapore, 2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research [(B), No. 24360111].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sethavut Duangchan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duangchan, S., Koishikawa, Y., Shirahama, R. et al. Reduced operating temperature of active layer Si covered by nanocrystalline diamond film. J Mater Sci: Mater Electron 28, 617–624 (2017). https://doi.org/10.1007/s10854-016-5566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5566-2

Keywords

Navigation