Skip to main content
Log in

Effect of copper inclusion on structural, optical and electrical properties of ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, the effect of copper inclusion on structural, optical and electrical properties of spray deposited ZnO thin films is studied. The X-ray diffraction studies showed that the films are polycrystalline in nature with hexagonal structure. The optical studies revealed that the band gap energy of ZnO increases from 3.23 to 3.31 eV as Cu inclusion varies from 0 to 6 at. %. The dark electrical resistivity measurement was done by two probe method. The room temperature resistivity of ZnO increases from 10−2 to 102 O-cm depending on Cu inclusion. The thermoelectric power (TEP) measurements confirmed that the spray deposited ZnO films exhibits n-type conductivity. The Seebeck’s coefficient calculated from TEP was found in the range 30–11 µVK−1 depending on Cu inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Chakraborty, T. Mondal, S.K. Bera, S.K. Sen, R. Ghosh, G.K. Paul, Mater. Chem. Phys. 112, 162 (2008)

    Article  Google Scholar 

  2. M.A. Lucio-López, M.A. Luna-Arias, A. Maldonado, M.L. de la Olvera, D.R. Acosta, Sol. Energy Mater. Sol. Cells 90, 733 (2006)

    Article  Google Scholar 

  3. M.L. de la Olvera, H. Gómez, A. Maldonado, Sol. Energy Mater. Sol. Cells 91, 1449 (2007)

    Article  Google Scholar 

  4. J. Wienke, A.S. Booij, Thin Solid Films 516, 4508 (2008)

    Article  Google Scholar 

  5. R.C. Wang, C.P. Liu, J.L. Huang, Appl. Phys. Lett. 88, 023111 (2006)

    Article  Google Scholar 

  6. C.L. Kuo, R.C. Wang, C.P. Liu, J.L. Huang, Nanotechnology 19, 3 (2008)

    Google Scholar 

  7. Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, P.H. Fleming, Solid State Electron. 47, 2269 (2003)

    Article  Google Scholar 

  8. W.I. Park, S.J. An, J.L. Yang, G.C. Yi, S. Hong, T. Joo, M. Kim, J. Phys. Chem. B 108, 15457 (2004)

    Article  Google Scholar 

  9. M. Lorenz, E.M. Kaidashev, A. Rahm, Th Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 133107 (2005)

    Article  Google Scholar 

  10. J.B. Cui, U.J. Gibson, Appl. Phys. Lett. 87, 133108 (2005)

    Article  Google Scholar 

  11. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, E.L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003)

    Article  Google Scholar 

  12. S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B 109, 2526 (2005)

    Article  Google Scholar 

  13. S.Y. Bae, H.W. Seo, J. Park, J. Phys. Chem. B 108, 5206 (2004)

    Article  Google Scholar 

  14. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, Appl. Surf. Sci. 253, 6905 (2007)

    Article  Google Scholar 

  15. S. Eustis, D.C. Meier, M.R. Beversluis, B. Nikoobakht, ACS Nano 2, 368 (2008)

    Article  Google Scholar 

  16. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J. Phys. Chem. C 112, 9579 (2008)

    Article  Google Scholar 

  17. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  Google Scholar 

  18. M. Öztas, M. Bedir, Thin Solid Films 516, 1703 (2008)

    Article  Google Scholar 

  19. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)

    Article  Google Scholar 

  20. Y. Kanai, Jpn. J. Appl. Phys. 30, 703 (1991)

    Article  Google Scholar 

  21. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, L. Wang, M. Tanemura, J.S. Chen, Appl. Phys. Lett. 90, 032509 (2007)

    Article  Google Scholar 

  22. C. Sudakar, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, Phys. Rev. B 75, 054423 (2007)

    Article  Google Scholar 

  23. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  Google Scholar 

  24. Powder Diffraction File, JCPDS-International Center for Diffraction Data, Pennsylvania, 1972

  25. B.D. Cullity, Elements of X-rays Diffraction, 2nd edn. (Addison-Wesley, London, 1978)

    Google Scholar 

  26. O. Lupan, Th Pauporté, T. Le Bahers, B. Viana, I. Ciofini, Adv. Funct. Mater. 21, 3564 (2011)

    Article  Google Scholar 

  27. J.P. Lin, J.M. Wu, Appl. Phys. Lett. 92, 134103 (2008)

    Article  Google Scholar 

  28. Y.M. Chung, C.S. Moon, M.J. Jung, J.G. Han, Surf. Coat. Technol. 200, 936 (2005)

    Article  Google Scholar 

  29. Lung-Chien Chen, Cheng-An Hsieh, Xiuyu Zhang, Materials 7, 7304 (2014)

    Article  Google Scholar 

  30. S. Jager, B. Szyszka, J. Szczyrbowski, G. Brauer, Surf. Coat. Technol. 98, 1304 (1998)

    Article  Google Scholar 

  31. N. Gayen, K. Sarkar, S. Hussain, R. Bhar, A. Pal, Ind. J. Pure Appl. Phys. 49, 470 (2011)

    Google Scholar 

  32. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003)

    Article  Google Scholar 

  33. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Article  Google Scholar 

  34. S. Chakrabarti, D. Ganguli, S. Chaudhure, J. Phys. D Appl. Phys. 36, 146 (2003)

    Article  Google Scholar 

  35. S.S. Kale, U.S. Jahav, C.D. Lokhande, Indian J. Pure Appl. Phys. 34, 324 (1996)

    Google Scholar 

  36. X.D. Liu, J.T. Wang, B.Z. Ding, Metal. Mater. Sci. 28, 59 (1993)

    Article  Google Scholar 

  37. Y.Z. Wang, G.W. Qioa, X.D. Liu, B.Z. Ding, Z.Q. Hu, Mater. Lett. 17, 152 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. U. Ubale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, V.P., Ubale, A.U. Effect of copper inclusion on structural, optical and electrical properties of ZnO thin films. J Mater Sci: Mater Electron 27, 12826–12833 (2016). https://doi.org/10.1007/s10854-016-5416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5416-2

Keywords

Navigation