Skip to main content
Log in

Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lanthanum and magnesium substituted strontium hexaferrites, having the general formula Sr1−xLaxMgyFe12−yO19 (x, y = 0, 0.05, 0.10, 0.15, 0.20), have been synthesized by citrate precursor method. X-ray diffraction confirms all the samples exhibit single hexagonal phase with space group P63/mmc. The infrared spectrum shows two prominent peaks in the range of 430–590 cm−1 indicating the formation M-type hexagonal ferrite. Magnetic study shows that the value of saturation magnetization and retentivity decreases while as coercivity increases with the concentration of doping. Temperature dependent magnetization presents a sharp peak just below the Curie temperature, showing super-paramagnetic behaviour of the prepared material. The dielectric parameters: dielectric constant, loss, ac conductivity were studied as a function of frequency. The impedance spectroscopy method has been used to analyze the effect of grain and grain boundary on the electrical properties of the prepared material. The Cole–Cole diagram suggests that conduction is mainly due to grain boundaries. La–Mg substitution into strontium ferrite increases the magnetic and dielectric properties which could ensure a higher memory storage capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Surrig, K.A. Hempel, D. Bonnenberg, Appl. Phys. Lett. 63, 1836 (1993)

    Article  Google Scholar 

  2. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Article  Google Scholar 

  3. M.J. Iqbal, M.N. Ashiq, Chem. Eng. J. 136, 383–389 (2008)

    Article  Google Scholar 

  4. S. Hussain, N.A. Shah, A. Maqsood, A. Ali, M. Naeem, W.A.A. Syed, J. Supercond. Nov. Magn. 24, 1245–1248 (2011)

    Article  Google Scholar 

  5. S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, M. Zhao, J. Magn. Magn. Mater. 212, 175–177 (2000)

    Article  Google Scholar 

  6. A. Davoodi, B. Hashemi, J. Alloys Compd. 509, 5893–5896 (2011)

    Article  Google Scholar 

  7. M. Jazirepour, M.H. Shams, O. Khani, J. Alloys Compd. 545, 32–40 (2012)

    Article  Google Scholar 

  8. A. Arora, S.B. Narang, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5092-2

    Google Scholar 

  9. M.J. Iqbal, M.N. Ashiq, Scr. Mater. 56, 145–148 (2007)

    Article  Google Scholar 

  10. M.N. Ashiq, M.J. Iqbal, I.H. Gul, J. Magn. Magn. Mater. 323, 259–263 (2011)

    Article  Google Scholar 

  11. I. Ahmad, G. Murtaza, S. Masood, M. Kanwal, G. Mustafa, M.N. Akther, H. Ullah, M. Ahmad, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4549-7

    Google Scholar 

  12. G.L. Sun, J.B. Lio, J.J. Sun, X.Z. Yang, J. Magn. Magn. Mater. 281, 173–177 (2004)

    Article  Google Scholar 

  13. S. Amiri, H. Shokrollahil, J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  Google Scholar 

  14. A. Vijayalakshmi, N.S. Gajbhiye, J. Appl. Phys. 83, 400–406 (1998)

    Article  Google Scholar 

  15. D. Ravinder, P.V.B. Reddy, P. Shalini, J. Mater. Sci. Lett. 22, 1599–1601 (2003)

    Article  Google Scholar 

  16. H.M. Xiao, X.M. Liu, S.Y. Fu, Compos. Sci. Technol. 66, 2003–2008 (2006)

    Article  Google Scholar 

  17. F.M.M. Pereira, M.R.P. Santos, J. Mater. Sci. 20, 408–417 (2009)

    Google Scholar 

  18. K.G. Rewatkar, N.M. Patil, S. Jaykumar, D.S. Bhowmick, C.L. Khobragade, J. Magn. Magn. Mater. 316, 19–22 (2007)

    Article  Google Scholar 

  19. H. Lou, X. Lu, Y. Pan, X. Wang, J. Wang, S. Sun, C. He, Q. Song, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5243-5

    Google Scholar 

  20. A. Singh, S.B. Narang, K. Singh, P. Sharma, O.P. Pandey, Eur. Phys. J. Appl. Phys. 33, 189–193 (2006)

    Article  Google Scholar 

  21. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, J. Alloys Compd. 547, 118–125 (2013)

    Article  Google Scholar 

  22. Y.P. Fu, C.H. Lin, K.Y. Pan, J. Appl. Phys. 42, 2681 (2003)

    Article  Google Scholar 

  23. V. Babu, P. Padaikathan, J. Magn. Magn. Mater. 241, 85–88 (2002)

    Article  Google Scholar 

  24. K.S. Moghaddam, A. Ataie, J. Alloys Compd. 426, 415–419 (2006)

    Article  Google Scholar 

  25. N. Chen, K. Yang, M. Gu, J. Alloys Compd. 490, 609–612 (2010)

    Article  Google Scholar 

  26. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, J. Supercond. Nov. Magn. 25, 2443–2445 (2012)

    Article  Google Scholar 

  27. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, K. Asokan, J. Phys. D Appl. Phys. 44, 435306 (2011)

    Article  Google Scholar 

  28. F. Song, X. Shen, J. Xiang, H. Song, Mater. Chem. Phys. 120, 213–216 (2010)

    Article  Google Scholar 

  29. X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, Phys. Status Solidi A 193, 314–319 (2002)

    Article  Google Scholar 

  30. X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, J. Magn. Magn. Mater. 238, 207–214 (2002)

    Article  Google Scholar 

  31. M. Jean, V. Nachbaur, J. Bran, J.M. Le Breton, J. Alloys Compd. 496, 306–312 (2010)

    Article  Google Scholar 

  32. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.N. Ashiq, S. Naseem, J. Alloys Compd. 550, 564–572 (2013)

    Article  Google Scholar 

  33. Z. Zheng, B. Guo, X. Mei, J. Magn. Magn. Mater. 78, 73–76 (1989)

    Article  Google Scholar 

  34. V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, K.M. Jadhav, Phys. B 406, 789–793 (2011)

    Article  Google Scholar 

  35. J. Slama, M. Soka, A. Gruskova, A. Gonzalez, V. Jancarik, J. Electron. Eng. 62, 239–243 (2011)

    Article  Google Scholar 

  36. O. Popov, P. Rachev, M. Mikhov, F. Calderon, J.L.S. Li, F. Leccabue, J. Magn. Magn. Mater. 99, 119–122 (1991)

    Article  Google Scholar 

  37. H. Pfeiffer, W. Schüppel, J. Magn. Magn. Mater. 130, 92–98 (1994)

    Article  Google Scholar 

  38. M. Manikandan, K.S. Kumar, N. Aparnadevi, C. Venkateswaran, Phys. Status Solidi A (2015). doi:10.1002/pssa.201532229

    Google Scholar 

  39. A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, F.M. Al-Dweri, Y. Maswadeh, U. Welp, J. Alloys Compd. 648, 419–427 (2015)

    Article  Google Scholar 

  40. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  Google Scholar 

  41. K.W. Wagnar, Ann. Phys. 40, 817–855 (1913)

    Article  Google Scholar 

  42. K.K. Patankar, P.D. Dombale, V.L. Mathe, S.A. Patil, R.N. Patil, Mater. Sci. Eng. B 8, 53–58 (2001)

    Article  Google Scholar 

  43. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 828

    Google Scholar 

  44. A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 91, 6626–6629 (2002)

    Article  Google Scholar 

  45. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Smart Mater. Struct. 15, N36–N39 (2006)

    Article  Google Scholar 

  46. R.K. Mahadule, P.R. Arjunwadkar, M.P. Mahabole, Int. J. Met. 2013, 198970 (2013). doi:10.1155/2013/198970

    Google Scholar 

  47. S. Nasir, G. Asghar, M.A. Malik, M.A. Rehman, J. Sol-Gel Sci. Technol. 59, 111 (2011)

    Article  Google Scholar 

  48. A.K. Jonscher, J. Mater. Sci. 24, 372–374 (1989)

    Article  Google Scholar 

  49. K.K. Patankar, S.S. Joshi, B.K. Chougule, Phys. Lett. A 346, 337–341 (2005)

    Article  Google Scholar 

  50. D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970)

    Article  Google Scholar 

  51. C.M. Kanamadi, J.S. Kim, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, J. Alloys Compd. 481, 781–785 (2009)

    Article  Google Scholar 

  52. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Phys. Status Solidi A 23, 575 (1947)

    Google Scholar 

  53. M. George, S.S. Nair, A.M. John, P.A. Roy, M.R. Anantharam, J. Phys. D Appl. Phys. 39, 900 (2006)

    Article  Google Scholar 

  54. M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh, R.K. Kotnala, App. Surf. Sci. 258, 5342–5347 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author B Want is grateful to the Department of Science and Technology, Govt. of India for providing a Vibrating Sample Magnetometer facility to the Department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basharat Want.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, B.H., Want, B. Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite. J Mater Sci: Mater Electron 27, 12582–12590 (2016). https://doi.org/10.1007/s10854-016-5389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5389-1

Keywords

Navigation