Skip to main content
Log in

Calcining temperature dependence on structure and dielectric properties of CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 powders were obtained by calcining the precursor, which was synthesized by sol–gel process, at different temperatures, and the ceramics were obtained by dry pressing and sintering using the powders. The dependence of calcining temperature on the microstructure and dielectric properties of the ceramics was studied. The results show that the grain size of the powder grows larger with increasing calcining temperature from 700 to 1000 °C. With increasing the calcining temperature, the grain size of CCTO ceramics increases and then decreases, while the porosity exhibits an opposite trend. The ceramic, obtained by using the powders calcined at 850 °C, shows the largest grain size, and it also shows good dielectric properties with the dielectric constant of 2.61 × 104 and the dielectric loss of 0.12 at 1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.A. Bender, M.J. Pan, The effect of processing on the giant dielectric properties of CaCu3Ti4O12. Mater. Sci. Eng. B 117(3), 339–347 (2005). doi:10.1016/j.mseb.2004.11.019

    Article  Google Scholar 

  2. X. Fang, X. Liu, Z.-K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization. J. Mater. Chem. A 3(18), 10005–10012 (2015). doi:10.1039/c5ta00943j

    Article  Google Scholar 

  3. G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Electrical properties of AC3B4O12-type perovskite ceramics with different cation vacancies. Mater. Res. Bull. 65, 260–265 (2015). doi:10.1016/j.materresbull.2015.02.012

    Article  Google Scholar 

  4. D. Xu, K. He, R. Yu, X. Sun, Y. Yang, H. Xu, H. Yuan, J. Ma, High dielectric permittivity and low dielectric loss in sol–gel derived Zn doped CaCu3Ti4O12 thin films. Mater. Chem. Phys. 153, 229–235 (2015). doi:10.1016/j.matchemphys.2015.01.007

    Article  Google Scholar 

  5. Z. Liu, G. Jiao, X. Chao, Z. Yang, Preparation, microstructure, and improved dielectric and nonlinear electrical properties of Na1/2La1/2Cu3Ti4O12 ceramics by sol–gel method. Mater. Res. Bull. 48(11), 4877–4883 (2013). doi:10.1016/j.materresbull.2013.06.056

    Article  Google Scholar 

  6. B. Zhu, Z. Wang, Y. Zhang, Z. Yu, J. Shi, R. Xiong, Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater. Chem. Phys. 113(2–3), 746–748 (2009). doi:10.1016/j.matchemphys.2008.08.037

    Article  Google Scholar 

  7. M. Li, X.L. Chen, D.F. Zhang, Q. Liu, C.X. Li, The effect of grain boundary resistance on the dielectric response of CaCu3Ti4O12. Ceram. Int. 41(10), 14854–14859 (2015). doi:10.1016/j.ceramint.2015.08.019

    Article  Google Scholar 

  8. C.R. Foschini, R. Tararam, A.Z. Simões, L.S. Rocha, C.O.P. Santos, E. Longo, J.A. Varela, Rietveld analysis of CaCu3Ti4O12 thin films obtained by RF-sputtering. J. Mater. Sci. Mater. Electron. 27(3), 2175–2182 (2015). doi:10.1007/s10854-015-4084-y

    Article  Google Scholar 

  9. M. Xiao, K. Wang, X. Chenyang, S. Xie, Nonlinear current–voltage behavior of CaCu3Ti4O12 thin films derived from sol–gel method. J. Mater. Sci. Mater. Electron. 25(6), 2710–2715 (2014). doi:10.1007/s10854-014-1933-z

    Article  Google Scholar 

  10. J. Zhao, J. Liu, G. Ma, Preparation, characterization and dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 38(2), 1221–1225 (2012). doi:10.1016/j.ceramint.2011.08.052

    Article  Google Scholar 

  11. S. De Almeida-Didry, C. Autret, C. Honstettre, A. Lucas, F. Pacreau, F. Gervais, Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12-based materials. Solid State Sci. 42, 25–29 (2015). doi:10.1016/j.solidstatesciences.2015.03.004

    Article  Google Scholar 

  12. J. Li, A.W. Sleight, M.A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12. Solid State Commun. 135(4), 260–262 (2005). doi:10.1016/j.ssc.2005.04.028

    Article  Google Scholar 

  13. R. Kumar, M. Zulfequar, T.D. Senguttuvan, Structural and impedance spectroscopic studies of spark plasma sintered CaCu3Ti4O12 dielectric ceramics: an evidence of internal resistive barrier effect. J. Mater. Sci. Mater. Electron. 27(5), 5233–5237 (2016). doi:10.1007/s10854-016-4418-4

    Article  Google Scholar 

  14. R. Kumar, M. Zulfequar, T.D. Senguttuvan, Dielectric properties of microwave flash combustion derived and spark plasma sintered CaCu3Ti4O12 ceramic: role of reduction in grain boundary activation energy. J. Mater. Sci.: Mater. Electron. 26(9), 6718–6722 (2015). doi:10.1007/s10854-015-3275-x

    Google Scholar 

  15. R. Kumar, M. Zulfequar, V.N. Singh, J.S. Tawale, T.D. Senguttuvan, Microwave sintering of dielectric CaCu3Ti4O12: an interfacial conductance and dipole relaxation effect. J. Alloy. Compd. 541, 428–432 (2012). doi:10.1016/j.jallcom.2012.07.052

    Article  Google Scholar 

  16. J.Q. Wang, X. Huang, X.H. Zheng, D.P. Tang, Structure and electric properties of CaCu3Ti4O12 ceramics prepared by rapid sintering. J. Mater. Sci. Mater. Electron. 27(2), 1345–1349 (2015). doi:10.1007/s10854-015-3895-1

    Article  Google Scholar 

  17. T. Li, R. Xue, J. Hao, Y. Xue, Z. Chen, The effect of calcining temperatures on the phase purity and electric properties of CaCu3Ti4O12 ceramics. J. Alloy. Compd. 509(3), 1025–1028 (2011). doi:10.1016/j.jallcom.2010.09.163

    Article  Google Scholar 

  18. X. Chao, P. Wu, Y. Zhao, P. Liang, Z. Yang, Effect of CaCu3Ti4O12 powders prepared by the different synthetic methods on dielectric properties of CaCu3Ti4O12/polyvinylidene fluoride composites. J. Mater. Sci. Mater. Electron. 26(5), 3044–3051 (2015). doi:10.1007/s10854-015-2795-8

    Article  Google Scholar 

  19. L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju, Sol–gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant. Ceram. Int. 41(10), 13486–13492 (2015). doi:10.1016/j.ceramint.2015.07.140

    Article  Google Scholar 

  20. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, J. Hu, Very low loss tangent and high dielectric permittivity in pure-CaCu3Ti4O12 ceramics prepared by a modified sol-gel process. J. Am. Ceram. Soc. 95(5), 1497–1500 (2012). doi:10.1111/j.1551-2916.2012.05147.x

    Article  Google Scholar 

  21. R. Jia, X. Zhao, J. Li, X. Tang, Colossal breakdown electric field and dielectric response of Al-doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B 185, 79–85 (2014). doi:10.1016/j.mseb.2014.02.015

    Article  Google Scholar 

  22. L. Singh, U.S. Rai, K.D. Mandal, B.C. Sin, Lee H-i, H. Chung, Y. Lee, Comparative dielectric studies of nanostructured BaTiO3, CaCu3Ti4O12 and 0.5BaTiO3·0.5CaCu3Ti4O12 nano-composites synthesized by modified sol–gel and solid state methods. Mater. Charact. 96, 54–62 (2014). doi:10.1016/j.matchar.2014.07.019

    Article  Google Scholar 

  23. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Cryst. Growth Charact. Mater. 60(2), 15–62 (2014). doi:10.1016/j.pcrysgrow.2014.04.001

    Article  Google Scholar 

  24. H.E. Kim, S.-M. Choi, Y.-W. Hong, S.-I. Yoo, Improved dielectric properties of the CaCu3Ti4O12 composites using BaTiO3-coated powder as precursor. J. Alloy. Compd. 610, 594–599 (2014). doi:10.1016/j.jallcom.2014.04.215

    Article  Google Scholar 

  25. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, A novel approach to achieve high dielectric permittivity and low loss tangent in CaCu3Ti4O12 ceramics by co-doping with Sm3+ and Mg2+ ions. J. Eur. Ceram. Soc. 35(13), 3521–3528 (2015). doi:10.1016/j.jeurceramsoc.2015.06.008

    Article  Google Scholar 

  26. L. Liu, H. Fan, P. Fang, L. Jin, Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol–gel method. Solid State Commun. 142(10), 573–576 (2007). doi:10.1016/j.ssc.2007.04.005

    Article  Google Scholar 

  27. T. Fang, L. Mei, H. Ho, Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta Mater. 54(10), 2867–2875 (2006). doi:10.1016/j.actamat.2006.02.037

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Nos. 51402091, 11304082 and 11404102), the scientific research foundation for new introduced doctors in Henan Normal University (No. 11114), and the National University Student Innovation Program (201410476037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.W., Jia, P.B., Wang, X.E. et al. Calcining temperature dependence on structure and dielectric properties of CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 27, 12134–12140 (2016). https://doi.org/10.1007/s10854-016-5366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5366-8

Keywords

Navigation