Skip to main content
Log in

Green electrophoretic deposition of Bi2O3 coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to significant band gap, high refractive index, dielectric permittivity, photoluminescence, dielectric permittivity prominent photoconductivity and photocatalytic activity, preparation of bismuth oxide (Bi2O3) coating has been a topic of extensive research and has potential applications involving microelectronics, sensor technology, opticalcoating, etc. In this study, the coating of nano-Bi2O3 was successfully fabricated via environment-friendly aqueous electrophoretic deposition (EPD). The EPD behavior of nano-Bi2O3 in aqueous dispersion was affected by the addition of nitric acid. Some factors influencing deposition behavior such as addition amount of nitric and particle concentration were investigated. For a typical EPD with nano-Bi2O3 of 1 g L−1, the deposition rate increase with addition amount of nitric acid at first due to the improvement in surface charging of nano-Bi2O3 particles caused by absorption of hydrogen ion, and then would decline when higher concentration of nitric acid (>2 mM) was added due to serious water electrolysis. For the purpose of obtaining higher deposition rate of nano-Bi2O3 in aqueous suspension which was limited by lower deposition voltage, it was suggested to employ higher suspension concentration of Bi2O3. Correspondingly, higher addition amount of nitric acid is desired for sufficient surface charging for more nano-Bi2O3 particles. The environment-friendly aqueous deposition system provides a green EPD for successfully fabricating Bi2O3 coating with many potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 507–510, 6 (2002)

    Google Scholar 

  2. L.L. Yang, Q.F. Han, J. Zhao, J.W. Zhu, X. Wang, W.H. Ma, Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity. J. Alloy. Compd. 614, 353–359 (2014)

    Article  Google Scholar 

  3. C.L. Yu, W.Q. Zhou, L.H. Zhu, G. Li, K. Yang, R.C. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl. Catal. B 184, 1–11 (2016)

    Article  Google Scholar 

  4. K. Barrera-Mota, M. Bizarro, M. Castellino, A. Tagliaferro, A. Hernandez, S.E. Rodil, Spray deposited beta-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochem. Photobiol. Sci. 14, 1110–1119 (2015)

    Article  Google Scholar 

  5. Z.J. Li, L.D. Wang, H.Y. Yue, W.D. Fei, Effect of Bi2O3 coating on interfacial wettability and tensile properties of Al18B4O33w/Al composite. J. Mater. Sci. 42, 9355–9358 (2007)

    Article  Google Scholar 

  6. C.L. Gomez, O. Depablos-Rivera, J.C. Medina, P. Silva-Bermudez, S. Muhl, A. Zeinert et al., Stabilization of the delta-phase in Bi2O3 thin films. Solid State Ionics 255, 147–152 (2014)

    Article  Google Scholar 

  7. R. Chen, W. Hu, L. Zou, B. Li, D. Bao, Highly uniform resistive switching effect in amorphous Bi2O3 thin films fabricated by a low-temperature photochemical solution deposition method. Appl. Phys. A 120, 379–384 (2015)

    Article  Google Scholar 

  8. J. Morasch, S.Y. Li, J. Brötz, W. Jaegermann, A. Klein, Reactively magnetron sputtered Bi2O3 thin films: analysis of structure, optoelectronic, interface, and photovoltaic properties. Phys. Status Solidi (a) 211, 93–100 (2014)

    Article  Google Scholar 

  9. K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater. 22, 3079–3085 (2010)

    Article  Google Scholar 

  10. S.W. Kang, S.W. Rhee, Growth of bismuth oxide films by direct liquid injection-metal organic chemical vapor deposition with Bi(tmhd)3 (tmhd: 2,2,6,6-tetramethyl-3,5-heptanedione). Thin Solid Films 468, 79–83 (2004)

    Article  Google Scholar 

  11. V. Fruth, M. Popa, D. Berger, R. Ramer, M. Gartner, A. Ciulei et al., Deposition and characterisation of bismuth oxide thin films. J. Eur. Ceram. Soc. 25, 2171–2174 (2005)

    Article  Google Scholar 

  12. H.T. Fan, S.S. Pan, X.M. Teng, C. Ye, G.H. Li, L.D. Zhang, δ-Bi2O3 thin films prepared by reactive sputtering: fabrication and characterization. Thin Solid Films 513, 142–147 (2006)

    Article  Google Scholar 

  13. L. Leontie, M. Caraman, I. Evtodiev, E. Cuculescu, A. Mija, Optical properties of bismuth oxide thin films prepared by reactive d.c. magnetron sputtering onto p-GaSe (Cu). Phys. Status Solidi (a) 205, 2052–2056 (2008)

    Article  Google Scholar 

  14. P. Lunca Popa, S. Sønderby, S. Kerdsongpanya, J. Lu, N. Bonanos, P. Eklund, Highly oriented δ-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering. J. Appl. Phys. 113, 046101 (2013)

    Article  Google Scholar 

  15. L. Cao, X.Q. Lu, F. Pu, X.L. Yin, Y. Xia, W. Huang et al., Facile fabrication of superhydrophobic Bi/Bi2O3 surfaces with hierarchical micro-nanostructures by electroless deposition or electrodeposition. Appl. Surf. Sci. 288, 558–563 (2014)

    Article  Google Scholar 

  16. B.L. Zhu, X.Z. Zhao, Study on structure and optical properties of Bi2O3 thin films prepared by reactive pulsed laser deposition. Opt. Mater. 29, 192–198 (2006)

    Article  Google Scholar 

  17. H.T. Zhang, X. Zhang, D.C. Zhang, X.Z. Sun, H. Lin, C.H. Wang et al., One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 117, 1616–1627 (2013)

    Article  Google Scholar 

  18. E. Ghasemi, A.M. Arabi, Electrophoretic deposition of kaolin: effects of Al/(Al plus Si) ratio, surface charge, mineral, structural and morphological properties. J. Mater. Sci.: Mater. Electron. 26, 6997–7005 (2015)

    Google Scholar 

  19. L.M. Guo, X.H. Wang, C.F. Zhong, L.T. Li, Magnetic properties of TiO2/Ni hybrid nanotube arrays by electrophoretic deposition. J. Alloy. Compd. 534, 6–8 (2012)

    Article  Google Scholar 

  20. I. Mazurenko, M. Etienne, O. Tananaiko, V. Urbanova, V. Zaitsev, A. Walcarius, Electrophoretic deposition of macroporous carbon nanotube assemblies for electrochemical applications. Carbon 53, 302–312 (2013)

    Article  Google Scholar 

  21. C. Ponzoni, R. Rosa, M. Cannio, V. Buscaglia, E. Finocchio, P. Nanni et al., Electrophoretic deposition of multiferroic BiFeO3 sub-micrometric particles from stabilized suspensions. J. Eur. Ceram. Soc. 33, 1325–1333 (2013)

    Article  Google Scholar 

  22. S. Novak, K. König, Fabrication of alumina parts by electrophoretic deposition from ethanol and aqueous suspensions. Ceram. Int. 35, 2823–2829 (2009)

    Article  Google Scholar 

  23. W. Li, Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys. 99, 174–180 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daixiong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Xiang, Q. Green electrophoretic deposition of Bi2O3 coating. J Mater Sci: Mater Electron 27, 11995–11999 (2016). https://doi.org/10.1007/s10854-016-5346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5346-z

Keywords

Navigation