Skip to main content

Advertisement

Log in

Synthesis and characterization of CdS nanoparticles decorated TiO2 matrix for an efficient N3 based dye sensitized solar cell (DSSC)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conventional dye sensitized solar cell (DSSC) comprise of mostly the titania matrix sensitized with absorber dye molecules acting as light energy scavengers. The present investigation deals with formulating CdS–TiO2 conjugate matrix for the DSSC system using N3 dye sensitizer. TiO2 nanoparticles (NPs) were pasted on FTO glass substrate and thin film of CdS was coated on titania matrix by chemical bath deposition technique using precursors cadmium acetate and thiourea. The differential absorbance spectra of the CdS–TiO2 conjugate system shows sharp absorption edges around 345–500 nm, corresponding to band gap energies in the region 3.59 and 2.47 eV respectively, indicative of formation of two distinguishable energy region for the existence of the nano crystallites of both TiO2 and CdS. The shift in Raman bands was also observed with the incorporation of CdS in TiO2 matrix. XRD data confirms the formation of crystalline CdS nanoparticles. The FE–SEM images revealed that the TiO2 particles are spherical and monodispersed having diameter in the range 20–30 nm and embedded with CdSNPs of average particle size 10–15 nm. The performance characteristics of the synthesized films towards photovoltaic behavior were studied with the record of short circuit currents through JV measurement using N3 absorber dye and the I/I3 electrolyte under 30 mW cm−2 light intensity. An effective increase of efficiency is observed with the CdS modified TiO2 matrix compared to the bare TiO2 in the DSSC system and a maximum photo-conversion efficiency of 7.5 % was obtained with the optimized dye loading. Impedance spectroscopic measurements give important information about the interfacial electron injection and recombination dynamics of the device. The incident photon-to-current conversion efficiency measurements show that both the absorbers CdS and N3 dye, contribute to the cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’Regant, M. Gra tzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. Z. Lan, J. Wu, J. Lin, M. Huang, J. Mater. Sci. Mater. Electron. 21, 833 (2010)

    Article  Google Scholar 

  3. B. Liu, R. Luo, Q. Liang, Y. Zheng, B. Li, J. Zhang, W. Li, L. Wu, L. Feng, J. Mater. Sci. Mater. Electron. 26, 9985 (2015)

    Article  Google Scholar 

  4. H. Movla, A.M. Rafi, N.M. Rafi, Optik 126, 5088 (2015)

    Article  Google Scholar 

  5. S. Sharbati, S.H. Keshmiri, J.T. McGoffin, R. Geisthardt, Appl. Phys. A 118, 1259 (2015)

    Article  Google Scholar 

  6. P.E. De Jongh, D. Vanmaekelbergh, Phys. Rev. Lett. 77, 3427 (1996)

    Article  Google Scholar 

  7. G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, J. Phys. Chem. B 101, 8141 (1997)

    Article  Google Scholar 

  8. N. Tétreault, É. Arsenault, L.P. Heiniger, N. Soheilnia, J. Brillet, T. Moehl, S. Zakeeruddin, G.A. Ozin, M. Grätzel, Nano Lett. 11, 4579 (2011)

    Article  Google Scholar 

  9. L. Kavan, J.H. Yum, M. Gratzel, Nano Lett. 11, 5501 (2011)

    Article  Google Scholar 

  10. M. Hocevar, U.O. Krasovec, M. Berginc, G. Drazic, N. Hauptman, M. Topic, J. Sol-Gel. Sci. Technol. 48, 384 (2008)

    Article  Google Scholar 

  11. J. Jiu, S. Isoda, M. Adachi, H. Wang, J. Mater. Sci. Mater. Electron. 18, 593 (2007)

    Article  Google Scholar 

  12. H. Ellis, I. Schmidt, A. Hagfeldt, G. Wittstock, G. Boschloo, J. Phys. Chem. C 119, 21775 (2015)

    Article  Google Scholar 

  13. S. Zhang, Z. Lan, J. Wu, X. Chen, C. Zhang, J. Alloys Compd. 656, 253 (2016)

    Article  Google Scholar 

  14. A. Pandikumar, S.-P. Lim, S. Jayabal, N.M. Huang, H.N. Lim, R. Ramaraj, Renew. Sustain. Energy Rev. 60, 408 (2016)

    Article  Google Scholar 

  15. J.-K. Lee, B.-H. Jeong, S.-I. Jang, Y.-S. Yeo, S.-H. Park, J.-U. Kim, Y.-G. Kim, Y.-W. Jang, M.-R. Kim, J. Mater. Sci. Mater. Electron. 20, 446 (2009)

    Article  Google Scholar 

  16. S. Luo, H. Shen, Y. Zhang, J. Li, D. Oron, H. Lin, Electrochem. Acta 191, 16 (2016)

    Article  Google Scholar 

  17. K. Sodeyama, M. Sumita, C. O’Rourke, U. Terranova, A. Islam, L. Han, D.R. Bowler, Y. Tateyama, J. Phys. Chem. Lett. 3, 472 (2012)

    Article  Google Scholar 

  18. Z.-S. Wang, K. Sayama, H. Sugihara, J. Phys. Chem. B 109, 22449 (2005)

    Article  Google Scholar 

  19. V. Venkatraman, S. Abburu, B.K. Alsberg, Phys. Chem. Chem. Phys. 17, 27672 (2015)

    Article  Google Scholar 

  20. K. Hara, M. Kurashigo, Y. Dan-oh, C. Kasasa, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, N. J. Chem. 27, 783 (2003)

    Article  Google Scholar 

  21. H. Jia, H. Xu, Y. Hu, Y. Tang, L. Zhang, Electrochem. Comm. 9, 354 (2007)

    Article  Google Scholar 

  22. N. Fuke, L.B. Hoch, A.Y. Koposov, V.W. Manner, D.J. Werder, A. Fukui, N. Koide, H. Katayama, M. Sykora, ACS Nano 4, 6377 (2010)

    Article  Google Scholar 

  23. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Sol. Energy 88, 137 (2013)

    Article  Google Scholar 

  24. A. Trenczek-Zajac, A. Kusior, A. Lacz, M. Radecka, K. Zakrzewska, Mater. Res. Bull. 60, 28 (2014)

    Article  Google Scholar 

  25. W. Li, J. Yang, Q. Jiang, Y. Luo, Y. Hou, S. Zhou, Y. Xiao, L. Fu, Z. Zhou, J. Power Source 307, 690 (2016)

    Article  Google Scholar 

  26. A. Jana, C. Bhattacharya, J. Datta, Electrochim. Acta 55, 6553 (2010)

    Article  Google Scholar 

  27. B. Sankapal, A. Tirpude, S. Majumder, P. Baviskar, J. Alloys Compd. 651, 399 (2015)

    Article  Google Scholar 

  28. M. Sabet, M. Salavati-Niasari, Electrochim. Acta 169, 168 (2015)

    Article  Google Scholar 

  29. G. Wang, S. Kuang, J. Zhang, S. Hou, S. Nian, Electrochim. Acta 187, 243 (2016)

    Article  Google Scholar 

  30. A. Chaves, K.S. Katiyan, S.P.S. Porto, Phys. Rev. 10, 3522 (1974)

    Article  Google Scholar 

  31. H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33 (2005)

    Article  Google Scholar 

  32. M. Abdulkbadar, B. Thomas, Nano Struct. Mater. 5, 289 (1995)

    Article  Google Scholar 

  33. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, J. Am. Chem. Soc. 131, 4078 (2009)

    Article  Google Scholar 

  34. J.F. Dewald, in Semiconductors, ed. by N.B. Hannay (Reinfold, New York, 1959)

    Google Scholar 

  35. F. Fabregat-Santiagoa, J. Bisquerta, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cell 87, 117 (2005)

    Article  Google Scholar 

  36. Y. Tachibana, K. Umekita, Y. Otsuka, S. Kuwabata, J. Phys. Chem. C 113, 6852 (2009)

    Article  Google Scholar 

  37. R.Y. Yang, H.Y. Chen, F.D. Lai, Adv. Mater. Sci. Eng. 2012, 1 (2012)

    Google Scholar 

  38. H. Li, C. Xie, Y. Liao, Y. Liu, Z. Zou, J. Wu, J. Alloys Compd. 569, 88 (2013)

    Article  Google Scholar 

  39. B.N. Mongal, S. Bhattacharya, S. Sengupta, T.K. Mandal, J. Datta, S. Naskar, Sol. Energy 134, 107 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Department of Science and Technology (DST-SERI) for financial support and MHRD, New Delhi, Govt. of India for the instrumental facilities provided to the Department. S. Bhattacharya thanks UGC, New Delhi for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayati Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Pal, A., Jana, A. et al. Synthesis and characterization of CdS nanoparticles decorated TiO2 matrix for an efficient N3 based dye sensitized solar cell (DSSC). J Mater Sci: Mater Electron 27, 12438–12445 (2016). https://doi.org/10.1007/s10854-016-5298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5298-3

Keywords

Navigation